Python3 A*寻路算法实现方式

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
import math
import random
import copy
import time
import sys
import tkinter
import threading

# 地图
tm = [
'############################################################',
'#S............................#............#.....#.........#',
'#..........#..................#......#.....#.....#.........#',
'#..........#..................#......#.....#.....#.........#',
'#..........#..................#......#.....#.....#.........#',
'#..........#.........................#.....#.....#.........#',
'#..........#..................#......#.....#...............#',
'#..#########..................#......#.....#.....#.........#',
'#..#..........................#......#.....#.....#.........#',
'#..#..........................#......#.....#.....#.........#',
'#..############################......#.....#.....#.........#',
'#.............................#......#.....#.....#.........#',
'#.............................#......#...........#.........#',
'#######.##################################################.#',
'#....#........#.................#.............#............#',
'#....#........#........#........#.............#............#',
'#....####.#####........#........#.............#............#',
'#.........#............#........#.............#............#',
'#.........#............#........#.............#............#',
'#.........#............#........#.............#............#',
'#.........#............#........#.............#............#',
'#.........#............#........#.............#............#',
'#.........#............#........####.#######.##............#',
'#.........#............#........#....#.......#.............#',
'#.........#............#........#....#.......#.............#',
'#......................#........#....#.......#.............#',
'#.........#............#........##.########..#.............#',
'#.........#............#..................#..########.######',
'#.........#............#..................#...............E#',
'############################################################']

# 存储搜索时的地图
test_map = []


#----------- 开放列表和关闭列表的元素类型,parent用来在成功的时候回溯路径 -----------
class Node_Elem:

 def __init__(self, parent, x, y, dist):
  self.parent = parent # 回溯父节点
  self.x = x # x坐标
  self.y = y # y坐标
  self.dist = dist # 从起点到此位置的实际距离


#----------- A*算法 -----------
class A_Star:
 
 def __init__(self, root, s_x, s_y, e_x, e_y, w=60, h=30):

  self.s_x = s_x # 起点x
  self.s_y = s_y # 起点y
  self.e_x = e_x # 终点x
  self.e_y = e_y # 终点y
  
  self.open = [] # open表
  self.close = [] # close表
  self.path = [] # path表

  # 创建画布
  self.root = root # 画布根节点
  self.width = w # 地图w,默认60
  self.height = h # 地图h,默认30
  self.__r = 3 # 半径
  # Tkinter.Canvas
  self.canvas = tkinter.Canvas(
    root,
    width=self.width * 10 + 100,
    height=self.height * 10 + 100,
    bg="#EBEBEB", # 背景白色 
    xscrollincrement=1,
    yscrollincrement=1
   )
  self.canvas.pack(expand=tkinter.YES, fill=tkinter.BOTH)
  self.title("A*迷宫算法(e:开始搜索或退出)")
  self.__bindEvents()
  self.new()

 # 按键响应程序
 def __bindEvents(self):

  self.root.bind("e", self.quite) # 退出程序

 # 退出程序
 def quite(self, evt):
  self.root.destroy()

 # 更改标题
 def title(self, s):
  self.root.title(s)

 # 初始化
 def new(self):

  node = self.canvas.create_oval(100 - self.__r,
       20 - self.__r, 100 + self.__r, 20 + self.__r,
       fill="#ff0000",
       outline="#ffffff",
       tags="node",
      )
  self.canvas.create_text(130, 20,
       text=u'Wall',
       fill='black'
      )
  node = self.canvas.create_oval(200 - self.__r,
       20 - self.__r, 200 + self.__r, 20 + self.__r,
       fill="#00ff00",
       outline="#ffffff",
       tags="node",
      )
  self.canvas.create_text(230, 20,
       text=u'Path',
       fill='black'
      )
  node = self.canvas.create_oval(300 - self.__r,
       20 - self.__r, 300 + self.__r, 20 + self.__r,
       fill="#AAAAAA",
       outline="#ffffff",
       tags="node",
      )
  self.canvas.create_text(330, 20,
       text=u'Searched',
       fill='black'
      )

  for i in range(self.width):
   for j in range(self.height):
    # 生成障碍节点,半径为self.__r
    if test_map[j][i] == '#':
     node = self.canvas.create_oval(i * 10 + 50 - self.__r,
       j * 10 + 50 - self.__r, i * 10 + 50 + self.__r, j * 10 + 50 + self.__r,
       fill="#ff0000", # 填充红色
       outline="#ffffff", # 轮廓白色
       tags="node",
      )
    # 显示起点
    if test_map[j][i] == 'S':
     node = self.canvas.create_oval(i * 10 + 50 - self.__r,
       j * 10 + 50 - self.__r, i * 10 + 50 + self.__r, j * 10 + 50 + self.__r,
       fill="#00ff00", # 填充绿色
       outline="#ffffff", # 轮廓白色
       tags="node",
      )
     self.canvas.create_text(i * 10 + 50, j * 10 + 50 - 20, # 使用create_text方法在坐标处绘制文字 
       text=u'Start', # 所绘制文字的内容 
       fill='black' # 所绘制文字的颜色为灰色
      )
    # 显示终点
    if test_map[j][i] == 'E':
     node = self.canvas.create_oval(i * 10 + 50 - self.__r,
       j * 10 + 50 - self.__r, i * 10 + 50 + self.__r, j * 10 + 50 + self.__r,
       fill="#00ff00", # 填充绿色
       outline="#ffffff", # 轮廓白色
       tags="node",
      )
     self.canvas.create_text(i * 10 + 50, j * 10 + 50 + 20, # 使用create_text方法在坐标处绘制文字 
       text=u'End', # 所绘制文字的内容 
       fill='black' # 所绘制文字的颜色为灰色
      )
    # 生成路径节点,半径为self.__r
    if test_map[j][i] == '*':
     node = self.canvas.create_oval(i * 10 + 50 - self.__r,
       j * 10 + 50 - self.__r, i * 10 + 50 + self.__r, j * 10 + 50 + self.__r,
       fill="#0000ff", # 填充蓝色
       outline="#ffffff", # 轮廓白色
       tags="node",
      )
    # 生成搜索区域,半径为self.__r
    if test_map[j][i] == ' ':
     node = self.canvas.create_oval(i * 10 + 50 - self.__r,
       j * 10 + 50 - self.__r, i * 10 + 50 + self.__r, j * 10 + 50 + self.__r,
       fill="#AAAAAA", # 填充白色
       outline="#ffffff", # 轮廓白色
       tags="node",
      )
  
 # 查找路径的入口函数
 def find_path(self):
  # 构建开始节点
  p = Node_Elem(None, self.s_x, self.s_y, 0.0)
  while True:
   # 扩展节点
   self.extend_round(p)
   # 如果open表为空,则不存在路径,返回
   if not self.open:
    return
   # 取F值最小的节点
   idx, p = self.get_best()
   # 到达终点,生成路径,返回
   if self.is_target(p):
    self.make_path(p)
    return
   # 把此节点加入close表,并从open表里删除
   self.close.append(p)
   del self.open[idx]

 # 生成路径 
 def make_path(self, p):
  # 从结束点回溯到开始点,开始点的parent == None
  while p:
   self.path.append((p.x, p.y))
   p = p.parent

 # 判断是否为终点
 def is_target(self, i):
  return i.x == self.e_x and i.y == self.e_y

 # 取F值最小的节点
 def get_best(self):
  best = None
  bv = 10000000 # MAX值
  bi = -1
  for idx, i in enumerate(self.open):
   value = self.get_dist(i)
   if value < bv:
    best = i
    bv = value
    bi = idx
  return bi, best
  
 # 求距离
 def get_dist(self, i):
  # F = G + H
  # G 为当前路径长度,H为估计长度
  return i.dist + math.sqrt((self.e_x - i.x) * (self.e_x - i.x)) + math.sqrt((self.e_y - i.y) * (self.e_y - i.y))

 # 扩展节点
 def extend_round(self, p):
  # 八个方向移动
  xs = (-1, 0, 1, -1, 1, -1, 0, 1)
  ys = (-1, -1, -1, 0, 0, 1, 1, 1)
  # 上下左右四个方向移动
  xs = (0, -1, 1, 0)
  ys = (-1, 0, 0, 1)
  for x, y in zip(xs, ys):
   new_x, new_y = x + p.x, y + p.y
   # 检查位置是否合法
   if not self.is_valid_coord(new_x, new_y):
    continue
   # 构造新的节点,计算距离
   node = Node_Elem(p, new_x, new_y, p.dist + self.get_cost(
      p.x, p.y, new_x, new_y))
   # 新节点在关闭列表,则忽略
   if self.node_in_close(node):
    continue
   i = self.node_in_open(node)
   # 新节点在open表
   if i != -1:
    # 当前路径距离更短
    if self.open[i].dist > node.dist:
     # 更新距离
     self.open[i].parent = p
     self.open[i].dist = node.dist
    continue
   # 否则加入open表
   self.open.append(node)

 # 移动距离,直走1.0,斜走1.4
 def get_cost(self, x1, y1, x2, y2):
  if x1 == x2 or y1 == y2:
   return 1.0
  return 1.4
 
 # 检查节点是否在close表
 def node_in_close(self, node):
  for i in self.close:
   if node.x == i.x and node.y == i.y:
    return True
  return False
 
 # 检查节点是否在open表,返回序号 
 def node_in_open(self, node):
  for i, n in enumerate(self.open):
   if node.x == n.x and node.y == n.y:
    return i
  return -1

 # 判断位置是否合法,超出边界或者为阻碍 
 def is_valid_coord(self, x, y):
  if x < 0 or x >= self.width or y < 0 or y >= self.height:
   return False
  return test_map[y][x] != '#'

 # 搜寻过的位置
 def get_searched(self):
  l = []
  for i in self.open:
   l.append((i.x, i.y))
  for i in self.close:
   l.append((i.x, i.y))
  return l


# 获取起点坐标
def get_start_XY():
 return get_symbol_XY('S')


# 获取终点坐标
def get_end_XY():
 return get_symbol_XY('E')


# 查找特定元素
def get_symbol_XY(s):
 for y, line in enumerate(test_map):
  try:
   x = line.index(s)
  except:
   continue
  else:
   break
 return x, y

  
# 标记路径位置 
def mark_path(l):
 mark_symbol(l, '*')


# 标记已搜索过的位置 
def mark_searched(l):
 mark_symbol(l, ' ')


# 标记函数
def mark_symbol(l, s):
 for x, y in l:
  test_map[y][x] = s

  
# 标记起点和终点
def mark_start_end(s_x, s_y, e_x, e_y):
 test_map[s_y][s_x] = 'S'
 test_map[e_y][e_x] = 'E'


# 将地图字符串转化为表
def tm_to_test_map():
 for line in tm:
  test_map.append(list(line))

  
# 寻找路径  
def find_path():
 s_x, s_y = get_start_XY()
 e_x, e_y = get_end_XY()
 # A*算法
 a_star = A_Star(tkinter.Tk(), s_x, s_y, e_x, e_y)
 a_star.root.mainloop()
 a_star.find_path()
 searched = a_star.get_searched()
 path = a_star.path
 # 标记已搜索过的位置
 mark_searched(searched)
 # 标记路径位置 
 mark_path(path)
 # 标记起点和终点
 mark_start_end(s_x, s_y, e_x, e_y)
 print(u"路径长度:%d" % (len(path)))
 print(u"搜索过的区域:%d" % (len(searched)))
 a_star = A_Star(tkinter.Tk(), s_x, s_y, e_x, e_y)
 a_star.root.mainloop()
 
#----------- 程序的入口处 -----------

    
if __name__ == '__main__':

 print (u""" 
--------------------------------------------------------
 程序:A*迷宫问题程序 
 作者:Gm
 日期:2019-7-08
 语言:Python 3.7 
-------------------------------------------------------- 
 """)
 # 载入地图
 tm_to_test_map()
 # 寻找路径
 find_path()

以上这篇Python3 A*寻路算法实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的字符串替换操作示例

字符串的替换(interpolation), 可以使用string.Template, 也可以使用标准字符串的拼接. string.Template标示替换的字符, 使用"$"符号, 或...

python代码实现逻辑回归logistic原理

python代码实现逻辑回归logistic原理

Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于...

Python写入数据到MP3文件中的方法

本文实例讲述了Python写入数据到MP3文件中的方法。分享给大家供大家参考。具体分析如下: 通过Mp3的Id3V1数据段的数据来修正Mp3文件的正确名字,但是,有时候这个数据断中的数据...

Python实现性能自动化测试竟然如此简单

Python实现性能自动化测试竟然如此简单

一、思考❓❔ 1.什么是性能自动化测试? 性能系统负载能力超负荷运行下的稳定性系统瓶颈自动化测试使用程序代替手工提升测试效率性能自动化使用代码模拟大...

python并发和异步编程实例

关于并发、并行、同步阻塞、异步非阻塞、线程、进程、协程等这些概念,单纯通过文字恐怕很难有比较深刻的理解,本文就通过代码一步步实现这些并发和异步编程,并进行比较。解释器方面本文选择pyth...