Numpy之reshape()使用详解

yipeiwu_com6年前Python基础

如下所示:

Numpy中reshape的使用方法为:numpy.reshape(a, newshape, order='C')

参数详解:

1.a: type:array_like(伪数组,可以看成是对数组的扩展,但是不影响原始数组。)

需要reshape的array

2.newshape:新的数组

新形状应与原形状兼容。如果是整数,那么结果将是该长度的一维数组。一个形状尺寸可以是-1。在本例中,值是 从数组的长度和剩余维度推断出来的。

3.order: 可选为(C, F, A)

C: 按照行来填充

F: 按照列的顺序来填充

A: 按任意方向,(default)。 这里相当于行

4.returns: ndarray,即返回一或多维数组

实战:

首先,先创建几个n维数组

import numpy as np

这里的意思是创建了一个2维数组

这里创建了一个3维2X2的数组。

这是四维

(1,2) 表示 [[ 0, 1]]
(3,1,2)表示3个(1,2):
[[[ 0, 1]],
[[ 2, 3]],
[[ 4, 5]]],
(2,3,1,2)表示2个(3,1,2):
[ [[[ 0, 1]],
[[ 2, 3]],
[[ 4, 5]]],

[[[ 6, 7]],
[[ 8, 9]],
[[10, 11]]] ]

了解了newshape里面的东西,reshape基本没啥问题了。

我们再来看看order。

分别利用C,F,A来填充数据:

这就是reshape基本用法。

以上这篇Numpy之reshape()使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 矩阵增加一行或一列的实例

python 矩阵增加一行或一列的实例

矩阵增加行 np.row_stack() 与 np.column_stack() import numpy as np a = np.array([[4, 4,], [5, 5]])...

Flask和Django框架中自定义模型类的表名、父类相关问题分析

本文实例分析了Flask和Django框架中自定义模型类的表名、父类相关问题。分享给大家供大家参考,具体如下: 一. Flask和Django中定义表名(执行迁移后生成)的方式和flas...

Python矩阵常见运算操作实例总结

本文实例讲述了Python矩阵常见运算操作。分享给大家供大家参考,具体如下: python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。 一.n...

Python socket模块实现的udp通信功能示例

本文实例讲述了Python socket模块实现的udp通信功能。分享给大家供大家参考,具体如下: socket介绍 socket(简称 套接字) 是进程间通信的一种方式,它与其他进程间...

python虚拟环境完美部署教程

一、前言 预处理 建议仔细看完本文章之后在进行操作,避免失误,本环境可以用于生产环境,有利于生产环境python之间的环境隔离,互相不会产生环境冲突;pyenv和pyenv-virtua...