pandas-resample按时间聚合实例

yipeiwu_com6年前Python基础

如下所示:

import pandas as pd

#如果需要的话,需将df中的date列转为datetime

df.date = pd.to_datetime(df.date,format="%Y%m%d")

#将改好格式的date列,设置为df的index

df.set_index('date',drop=True)


#按年来提数据 (因为此时的datetime已经为index了,可以直接[]取行内容)

df['2018']

df['2018':'2021']

#按月来提数据

df['2018-01']

df['2018-01':'2018-05']

#按天来提出数据

df['2018-05-24':'2018-09-27']


#按日期汇总数据

#将数据以W星期,M月,Q季度,QS季度的开始第一天开始,A年,10A十年,10AS十年聚合日期第一天开始.的形式进行聚合

df.resample('W').sum()

df.resample('M').sum()


#具体某列的数据聚合

df.price.resample('W').sum().fillna(0) #星期聚合,以0填充NaN值

#某两列

df[['price','num']].resample('W').sum().fillna(0)

#某个时间段内,以W聚合,

df["2018-5":"2018-9"].resample("M").sum().fillna(0)

还有以下方式聚合

以上这篇pandas-resample按时间聚合实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Python中使用全局日志时需要注意的问题

在使用 uliweb 开发 soap webservice 后,启动 uliweb 时,werkzeug 的日志莫名其妙丢失了。 正常的日志: 复制代码 代码如下:[INFO] ...

Python subprocess库的使用详解

介绍 使用subprocess模块的目的是用于替换os.system等一些旧的模块和方法。 运行python的时候,我们都是在创建并运行一个进程。像Linux进程那样,一个进程可以f...

python基于递归解决背包问题详解

递归是个好东西,任何具有递归性质的问题通过函数递归调用会变得很简单。一个很复杂的问题,几行代码就能搞定。   最简单的递归问题:现有重量为weight的包,有若干重量分别为W1...

Python常用模块用法分析

本文较为详细的讲述了Python中常用的模块,分享给大家便于大家查阅参考之用。具体如下: 1.内置模块(不用import就可以直接使用) 常用内置函数: help(obj) 在线帮助,...

python中sleep函数用法实例分析

本文实例讲述了python中sleep函数用法。分享给大家供大家参考。具体如下: Python中的sleep用来暂停线程执行,单位为秒 #----------------------...