详解Python Opencv和PIL读取图像文件的差别

yipeiwu_com6年前Python基础

前言

之前在进行深度学习训练的时候,偶然发现使用PIL读取图片训练的效果要比使用python-opencv读取出来训练的效果稍好一些,也就是训练更容易收敛。可能的原因是两者读取出来的数据转化为pytorch中Tensor变量稍有不同,这里进行测试。

之后的代码都导入了:

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import torch
import cv2

测试

使用PIL和cv2读取图片时会有细微的区别,通过下面的代码可以发现两者读取图片是有区别的,也就是使用PIL读取出来的图片转为numpy格式和直接使用cv读取的图片在像素点上并不是完全一致:

In[11]: image = cv2.imread('datasets/0_target.jpg')
In[18]: image_pil = Image.open('datasets/0_target.jpg').convert('RGB')
In[19]: image_pil = np.array(image_pil)
In[20]: image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
In[21]: image_cv == image_pil
Out[21]: 
array([[[ True, True, False],
    [ True, False, False],
    [False, False, False],
    ...,
    [ True, True, True],
    [ True, True, True],
    [ True, True, True]],

    [[ True, True, False],
    [ True, True, True],
    [False, True, False],
    ...,
    [ True, True, False],
    [ True, True, True],
    [ True, True, True]],

    [[ True, True, False],
    [ True, True, True],
    [False, False, False],
    ...,
    [ True, True, True],
    [ True, True, True],
    [ True, True, False]],

    ...,

    [[ True, True, True],
    [ True, True, True],
    [ True, True, True],
    ...,
    [False, False, True],
    [ True, True, True],
    [False, False, False]],

    [[ True, True, True],
    [ True, True, True],
    [ True, True, True],
    ...,
    [ True, True, True],
    [ True, True, True],
    [False, False, False]],

    [[ True, False, False],
    [ True, False, False],
    [ True, False, False],
    ...,
    [ True, True, True],
    [False, False, False],
    [ True, False, False]]])
In[26]: image_cv.shape
Out[26]: (682, 700, 3)
In[27]: image_pil.shape
Out[27]: (682, 700, 3)
In[28]: image_pil - image_cv
Out[28]: 
array([[[ 0,  0,  1],
    [ 0, 255,  3],
    [255,  1,  2],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0]],

    [[ 0,  0,  2],
    [ 0,  0,  0],
    [255,  0,  2],
    ...,
    [ 0,  0, 254],
    [ 0,  0,  0],
    [ 0,  0,  0]],

    [[ 0,  0,  2],
    [ 0,  0,  0],
    [255,  1,  2],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0, 254]],

    ...,

    [[ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0],
    ...,
    [254,  1,  0],
    [ 0,  0,  0],
    [ 1, 255,  3]],

    [[ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 2, 254,  4]],

    [[ 0,  1, 253],
    [ 0,  1, 253],
    [ 0,  1, 255],
    ...,
    [ 0,  0,  0],
    [ 1, 254,  1],
    [ 0, 255,  2]]], dtype=uint8)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3 小数位的四舍五入(用两种方法解决round 遇5不进)

round( )函数简介 菜鸟教程中介绍到,round() 函数作用就是,返回浮点数x的四舍五入值。 > round( x [, n] ) 参数x,n均为数值表达式,返回值...

tensorflow 恢复指定层与不同层指定不同学习率的方法

如下所示: #tensorflow 中从ckpt文件中恢复指定的层或将指定的层不进行恢复: #tensorflow 中不同的layer指定不同的学习率 with tf.Graph...

对Pyhon实现静态变量全局变量的方法详解

python不能像C++一样直接定义一个static变量或者通过extern来导入别的库的变量而实现数据共享,但是python的思想是通过模块化来解决这个问题,就是通过模块来实现全局变量...

python输入多行字符串的方法总结

Python中输入多行字符串: 方法一:使用三引号 >>> str1 = '''Le vent se lève, il faut tenter de vivre....

python实现对求解最长回文子串的动态规划算法

python实现对求解最长回文子串的动态规划算法

基于Python实现对求解最长回文子串的动态规划算法,具体内容如下 1、题目 给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为1000。 示例 1: 输入:...