详解Python Opencv和PIL读取图像文件的差别

yipeiwu_com5年前Python基础

前言

之前在进行深度学习训练的时候,偶然发现使用PIL读取图片训练的效果要比使用python-opencv读取出来训练的效果稍好一些,也就是训练更容易收敛。可能的原因是两者读取出来的数据转化为pytorch中Tensor变量稍有不同,这里进行测试。

之后的代码都导入了:

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import torch
import cv2

测试

使用PIL和cv2读取图片时会有细微的区别,通过下面的代码可以发现两者读取图片是有区别的,也就是使用PIL读取出来的图片转为numpy格式和直接使用cv读取的图片在像素点上并不是完全一致:

In[11]: image = cv2.imread('datasets/0_target.jpg')
In[18]: image_pil = Image.open('datasets/0_target.jpg').convert('RGB')
In[19]: image_pil = np.array(image_pil)
In[20]: image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
In[21]: image_cv == image_pil
Out[21]: 
array([[[ True, True, False],
    [ True, False, False],
    [False, False, False],
    ...,
    [ True, True, True],
    [ True, True, True],
    [ True, True, True]],

    [[ True, True, False],
    [ True, True, True],
    [False, True, False],
    ...,
    [ True, True, False],
    [ True, True, True],
    [ True, True, True]],

    [[ True, True, False],
    [ True, True, True],
    [False, False, False],
    ...,
    [ True, True, True],
    [ True, True, True],
    [ True, True, False]],

    ...,

    [[ True, True, True],
    [ True, True, True],
    [ True, True, True],
    ...,
    [False, False, True],
    [ True, True, True],
    [False, False, False]],

    [[ True, True, True],
    [ True, True, True],
    [ True, True, True],
    ...,
    [ True, True, True],
    [ True, True, True],
    [False, False, False]],

    [[ True, False, False],
    [ True, False, False],
    [ True, False, False],
    ...,
    [ True, True, True],
    [False, False, False],
    [ True, False, False]]])
In[26]: image_cv.shape
Out[26]: (682, 700, 3)
In[27]: image_pil.shape
Out[27]: (682, 700, 3)
In[28]: image_pil - image_cv
Out[28]: 
array([[[ 0,  0,  1],
    [ 0, 255,  3],
    [255,  1,  2],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0]],

    [[ 0,  0,  2],
    [ 0,  0,  0],
    [255,  0,  2],
    ...,
    [ 0,  0, 254],
    [ 0,  0,  0],
    [ 0,  0,  0]],

    [[ 0,  0,  2],
    [ 0,  0,  0],
    [255,  1,  2],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0, 254]],

    ...,

    [[ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0],
    ...,
    [254,  1,  0],
    [ 0,  0,  0],
    [ 1, 255,  3]],

    [[ 0,  0,  0],
    [ 0,  0,  0],
    [ 0,  0,  0],
    ...,
    [ 0,  0,  0],
    [ 0,  0,  0],
    [ 2, 254,  4]],

    [[ 0,  1, 253],
    [ 0,  1, 253],
    [ 0,  1, 255],
    ...,
    [ 0,  0,  0],
    [ 1, 254,  1],
    [ 0, 255,  2]]], dtype=uint8)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用Flask框架获取用户IP地址的方法

本文实例讲述了python使用Flask框架获取用户IP地址的方法。分享给大家供大家参考。具体如下: 下面的代码包含了html页面和python代码,非常详细,如果你正使用Flask,也...

Python求一批字符串的最长公共前缀算法示例

Python求一批字符串的最长公共前缀算法示例

本文实例讲述了Python求一批字符串的最长公共前缀算法。分享给大家供大家参考,具体如下: 思路一:这个题一拿到手,第一反应就是以第一个字符串strs[0]为标准,如果其他字符串的第一...

详解Python中open()函数指定文件打开方式的用法

文件打开方式 当我们用open()函数去打开文件的时候,有好几种打开的模式。 'r'->只读 'w'->只写,文件已存在则清空,不存在则创建。 'a'->追加,写到文件...

Python文件操作之合并文本文件内容示例代码

Python文件操作之合并文本文件内容示例代码

前言 相信大家初入某个项目,一般都要看代码。有时候,想把代码文件打印下来看,不过一般代码文件数量都在两位数或更多,逐一打开、打印,确实太耗费精力了,此外,也会出现某个代码文件打印到纸上只...

python3 selenium自动化 下拉框定位的例子

python3 selenium自动化 下拉框定位的例子

我们在做web UI自动化时,经常会碰到下拉框,如下图: 所上图,下拉框的源代码如下: <html1> <head></head> <...