Pandas 解决dataframe的一列进行向下顺移问题

yipeiwu_com6年前Python基础

最近做比赛,有时候需要造出新的特征,而这次遇到的问题是将一列数据往下顺移一位。同时将开头缺失的那一个数据用其他方式填充。

df['feature'].shift(1)向下顺移一位,这时第一位会置为nan,需要填充。

----------------------历史分割线-----------------

错误方案:

当时首先想到的是用loc来直接进行替换,也就是

  i = len(dt)
 
  dt_new = pd.DataFrame()
 
  dt_new.loc[0, 'test'] = 0
 
  dt_new.loc[1 : i - 1, 'test'] = dt.loc[0 : i - 2, 'data'] #这里会报错

愿望很美好,现实很残酷,这种方法会报错。

不太好的方案:

于是打算用循环的办法一个一个替换

dt_new = pd.DataFrame()
 
dt_new.loc[0, 'test'] = 0
 
for i in range(len(dt) - 1):
  dt_new.loc[i + 1, 'test'] = dt.loc[i, 'data']

然而这个仅仅O(n)算法复杂度的东西,实际检验当用在几万行数据真的可以给你算好久好久,所以这个办法也弃用了。

正确方案:

pandas的dataframe,每一行是有序号的,直接进行替换的话,有时它会将相同序号的进行替换,这个是dataFrame的特性,有时会忽略从你选择的那一行开始替换,而直接从0开始。所以如果想用pandas来进行顺位移动的话,目前没有在API中找到便捷的方法。

最后终于想到了另外一个办法,就是转化为Numpy数组进行移动后,再转回dataFrame。

  dt_v = dt['data'].values
 
  dt_v = dt_v.flatten()
 
  i = len(dt)
 
  dt_new_v = np.zeros(i)
 
  dt_new_v[0] = 0
 
  dt_new_v[1 : i] = dt_v[0 : i - 1] #这里要注意Numpy数组截取[1, i]实际截取的是[1, i - 1]行!
 
  dt_new = pd.DataFrame()
 
  dt_new['test'] = dt_new_v

要注意Numpy数组截取[1, i]实际截取的是第[1, i - 1]行!

以上这篇Pandas 解决dataframe的一列进行向下顺移问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实战购物车项目的实现参考

Python实战购物车项目的实现参考

购物车程序 要求如下图 代码 # --*--coding:utf-8--*-- # Author: 村雨 import pprint productList = [('Iphon...

PyMongo安装使用笔记

这里是简单的安装和使用记录,首先要有一个可用的mongo环境,win环境或者linux环境都可以。 假定你对mongo有所了解和知道一些命令行操作。 安装和更新 跟大多数py包安装一样,...

Python设计模式之适配器模式原理与用法详解

Python设计模式之适配器模式原理与用法详解

本文实例讲述了Python设计模式之适配器模式原理与用法。分享给大家供大家参考,具体如下: 适配器模式(Adapter Pattern):将一个类的接口转换成为客户希望的另外一个接口....

Python基础之条件控制操作示例【if语句】

本文实例讲述了Python基础之条件控制操作。分享给大家供大家参考,具体如下: if 语句 Python中if语句的一般形式如下所示: if condition_1: state...

numpy.random.shuffle打乱顺序函数的实现

numpy.random.shuffle 在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数: def gen_data(so...