pytorch 实现tensor与numpy数组转换

yipeiwu_com6年前Python基础

看代码,tensor转numpy:

a = torch.ones(2,2)
b = a.numpy()
c=np.array(a) #也可以转numpy数组
print(type(a))
print(type(b))
print(a)
print(b)

输出为:

<class ‘torch.Tensor'>
<class ‘numpy.ndarray'>
tensor([[1., 1.],
[1., 1.]])
[[1. 1.]
[1. 1.]]

numpy转tensor:

import torch
import numpy as np

a = np.ones(5)
b = torch.from_numpy(a)
c=torch.Tensor(a) #也可以转pytorch Tensor
print(type(a))
print(type(b))
print(a)
print(b)

输出为:

<class ‘numpy.ndarray'>
<class ‘torch.Tensor'>
[1. 1. 1. 1. 1.]
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

可见pytorch的tensor对象与numpy数组是可以相互转换的,且numpy数组的默认类型是double

以上这篇pytorch 实现tensor与numpy数组转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python读取配置文件模块ConfigParser

1,ConfigParser模块简介 假设有如下配置文件,需要在Pyhton程序中读取 $ cat config.ini [db] db_port = 3306 db_user =...

下载给定网页上图片的方法

复制代码 代码如下: # -*- coding: utf-8 -*- import re import urllib def getHtml(url): #找出给出网页的源码 page...

详解用Python为直方图绘制拟合曲线的两种方法

详解用Python为直方图绘制拟合曲线的两种方法

直方图是用于展示数据的分组分布状态的一种图形,用矩形的宽度和高度表示频数分布,通过直方图,用户可以很直观的看出数据分布的形状、中心位置以及数据的离散程度等。 在python中一般采用m...

pandas通过字典生成dataframe的方法步骤

1、将一个字典输入: 该字典必须满足:value是一个list类型的元素,且每一个key对应的value长度都相同: (以该字典的key为columns) >>>...

Python牛刀小试密码爆破

难道真的要我破解一个么?算了,正好试试我的Python水平。 python版 复制代码 代码如下: #coding: gbk import httplib, urllib def Che...