pytorch 实现tensor与numpy数组转换

yipeiwu_com6年前Python基础

看代码,tensor转numpy:

a = torch.ones(2,2)
b = a.numpy()
c=np.array(a) #也可以转numpy数组
print(type(a))
print(type(b))
print(a)
print(b)

输出为:

<class ‘torch.Tensor'>
<class ‘numpy.ndarray'>
tensor([[1., 1.],
[1., 1.]])
[[1. 1.]
[1. 1.]]

numpy转tensor:

import torch
import numpy as np

a = np.ones(5)
b = torch.from_numpy(a)
c=torch.Tensor(a) #也可以转pytorch Tensor
print(type(a))
print(type(b))
print(a)
print(b)

输出为:

<class ‘numpy.ndarray'>
<class ‘torch.Tensor'>
[1. 1. 1. 1. 1.]
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

可见pytorch的tensor对象与numpy数组是可以相互转换的,且numpy数组的默认类型是double

以上这篇pytorch 实现tensor与numpy数组转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

TensorFlow高效读取数据的方法示例

概述 最新上传的mcnn中有完整的数据读写示例,可以参考。 关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每...

pandas.dataframe中根据条件获取元素所在的位置方法(索引)

在dataframe中根据一定的条件,得到符合要求的某行元素所在的位置。 代码如下所示: df = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],...

简单介绍Python中利用生成器实现的并发编程

我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程。 多进程编程在python中有类似C的os.fork,当然还有更高层封装的multiprocessing标准库...

Python读取环境变量的方法和自定义类分享

使用os.environ来读取和修改环境变量: 复制代码 代码如下: import os print (os.environ["TEMP"]) mydir = "c:\\mydir" o...

解决python中使用plot画图,图不显示的问题

解决python中使用plot画图,图不显示的问题

对以下数据画图结果图不显示,修改过程如下 df3 = {'chinese':109, 'American':88, 'German': 66, 'Korea':23, 'Japan'...