Pytorch 多维数组运算过程的索引处理方式

yipeiwu_com5年前Python基础

背景:对 python 不熟悉,能看懂代码,也能实现一些简单的功能,但是对 python 的核心思想和编程技巧不熟,所以使 Pytorch 写 loss 的时候遇到很多麻烦,尤其是在 batch_size > 1 的时候,做矩阵乘法之类的运算会觉得特别不顺手。

所幸,在边查边写的过程中,理解了 python 中多维运算的实现规则。

1、python 的基本索引规则

从 0 开始

对于给定的范围,如 b = a[m:n], 那么 b 为由 (n-m)个数据组成的新数组,由 a[m],a[m+1],...,a[n-1] 构成。(若 n<m, 得到空)

2、单个 tensor 运算,使用 dim 参数

torch 中对 tensor 的操作方法,若不加 dim 参数表示对整体的 tensr 进行操作,若增加 dim 参则表示按维操作。

例:

a = [[1,2],[3,4],[5,6]] (torch.tensor)

  torch.mean(a) => 3.5

  torch.mean(a,dim=0) => [1.5, 3.5, 5.5]

  torch.mean(a,dim=1) => [[3],[4]]

  torch.mean(a,dim=0) => [3,4]

  torch.mean(a,dim=1) => [1.5, 3.5, 5.5] 

注: torch.mean() 是一个降维的操作,所以不会出现在取均值后保持跟原 Tensor 同维的情况。 dim 参数存在时降一维,不存在时得到的是整个 Tensor 的均值。

3、两个 tensor 运算,构造对应形状

以乘法为例:

3.1 矩阵乘向量

a = [[1,2],[3,4],[5,6]]

b = [1,1]

计算乘法 c = a@b

若 a 拓展为 (N,3,2) N 为 batch_size, 计算 c2 = a@b

若 a,b 同时拓展, 变成(N, 2),那么需要做一个变换 b = b.view(N,2,1),计算 c3 = a@b

3.2 矩阵乘矩阵

a = [[1,2],[3,4],[5,6]]

b =[ [1,1],[1,1]]

计算乘法 c = a@b

若 a 拓展为 (N,3,2) N 为 batch_size, 计算 c2 = a@b

若 a,b 同时拓展, 变成(N, 2, 2),计算 c3 = a@b

以上这篇Pytorch 多维数组运算过程的索引处理方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

关于python列表增加元素的三种操作方法

 1、insert方法,该方法包含两个参数,第一个参数为插入的位置参数,第二个参数为插入内容 a = [0,0,0] b = [1,2,3] a.insert(0,b) p...

Python redis操作实例分析【连接、管道、发布和订阅等】

本文实例讲述了Python redis操作。分享给大家供大家参考,具体如下: 一、redis redis是一个key-value存储系统。和Memcached类似,它支持存储的value...

python 多维高斯分布数据生成方式

python 多维高斯分布数据生成方式

我就废话不多说了,直接上代码吧! import numpy as np import matplotlib.pyplot as plt def gen_clusters():...

Django中的CACHE_BACKEND参数和站点级Cache设置

CACHE_BACKEND参数 每个缓存后端都可能使用参数。 它们在CACHE_BACKEND设置中以查询字符串形式给出。 有效参数如下:     t...

python使用response.read()接收json数据的实例

如下所示: import json result = response.read() result.decode('utf-8') jsonData = json.loads(r...