pytorch 自定义卷积核进行卷积操作方式

yipeiwu_com6年前Python基础

一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的。

二 需要自己定义卷积核的目的:目前是需要通过一个VGG网络提取特征特后需要对其进行高斯卷积,卷积后再继续输入到网络中训练。

三 解决方案。使用

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

这里注意下weight的参数。与nn.Conv2d的参数不一样

可以发现F.conv2d可以直接输入卷积的权值weight,也就是卷积核。那么接下来就要首先生成一个高斯权重了。这里不直接一步步写了,直接输入就行。

kernel = [[0.03797616, 0.044863533, 0.03797616],
     [0.044863533, 0.053, 0.044863533],
     [0.03797616, 0.044863533, 0.03797616]]

四 完整代码

class GaussianBlur(nn.Module):
  def __init__(self):
    super(GaussianBlur, self).__init__()
    kernel = [[0.03797616, 0.044863533, 0.03797616],
         [0.044863533, 0.053, 0.044863533],
         [0.03797616, 0.044863533, 0.03797616]]
    kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0)
    self.weight = nn.Parameter(data=kernel, requires_grad=False)
 
  def forward(self, x):
    x1 = x[:, 0]
    x2 = x[:, 1]
    x3 = x[:, 2]
    x1 = F.conv2d(x1.unsqueeze(1), self.weight, padding=2)
    x2 = F.conv2d(x2.unsqueeze(1), self.weight, padding=2)
    x3 = F.conv2d(x3.unsqueeze(1), self.weight, padding=2)
    x = torch.cat([x1, x2, x3], dim=1)
    return x

这里为了网络模型需要写成了一个类,这里假设输入的x也就是经过网络提取后的三通道特征图(当然不一定是三通道可以是任意通道)

如果是任意通道的话,使用torch.expand()向输入的维度前面进行扩充。如下:

  def blur(self, tensor_image):
    kernel = [[0.03797616, 0.044863533, 0.03797616],
        [0.044863533, 0.053, 0.044863533],
        [0.03797616, 0.044863533, 0.03797616]]
    
    min_batch=tensor_image.size()[0]
    channels=tensor_image.size()[1]
    out_channel=channels
    kernel = torch.FloatTensor(kernel).expand(out_channel,channels,3,3)
    self.weight = nn.Parameter(data=kernel, requires_grad=False)
 
    return F.conv2d(tensor_image,self.weight,1,1)

以上这篇pytorch 自定义卷积核进行卷积操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Pyhton集合set()实现成果查漏的例子

问题:不同版本提交的城市文件夹数量固定,怎样确定本版本成果中缺少了哪些城市? 背景:已有参照文件作为标准,利用取差集的方法 #-*- coding: utf-8 -*- #以上版本成...

Python中的FTP通信模块ftplib的用法整理

Python中默认安装的ftplib模块定义了FTP类,其中函数有限,可用来实现简单的ftp客户端,用于上传或下载文件. FTP的工作流程及基本操作可参考协议RFC959. ftp登陆连...

Python日期的加减等操作的示例

本文介绍了Python日期的加减等操作的示例,分享给大家,也给自己留个笔记 1. 日期输出格式化 所有日期、时间的api都在datetime模块内。 1. datetime =>...

Python __setattr__、 __getattr__、 __delattr__、__call__用法示例

getattr `getattr`函数属于内建函数,可以通过函数名称获取 复制代码 代码如下: value = obj.attribute value = getattr(obj, "a...

Python中的四种交换数值的方法解析

Python中的四种交换数值的方法解析

这篇文章主要介绍了Python中的四种交换数值的方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 交换两个变量的值方法,这个面试...