pytorch 自定义卷积核进行卷积操作方式

yipeiwu_com5年前Python基础

一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的。

二 需要自己定义卷积核的目的:目前是需要通过一个VGG网络提取特征特后需要对其进行高斯卷积,卷积后再继续输入到网络中训练。

三 解决方案。使用

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

这里注意下weight的参数。与nn.Conv2d的参数不一样

可以发现F.conv2d可以直接输入卷积的权值weight,也就是卷积核。那么接下来就要首先生成一个高斯权重了。这里不直接一步步写了,直接输入就行。

kernel = [[0.03797616, 0.044863533, 0.03797616],
     [0.044863533, 0.053, 0.044863533],
     [0.03797616, 0.044863533, 0.03797616]]

四 完整代码

class GaussianBlur(nn.Module):
  def __init__(self):
    super(GaussianBlur, self).__init__()
    kernel = [[0.03797616, 0.044863533, 0.03797616],
         [0.044863533, 0.053, 0.044863533],
         [0.03797616, 0.044863533, 0.03797616]]
    kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0)
    self.weight = nn.Parameter(data=kernel, requires_grad=False)
 
  def forward(self, x):
    x1 = x[:, 0]
    x2 = x[:, 1]
    x3 = x[:, 2]
    x1 = F.conv2d(x1.unsqueeze(1), self.weight, padding=2)
    x2 = F.conv2d(x2.unsqueeze(1), self.weight, padding=2)
    x3 = F.conv2d(x3.unsqueeze(1), self.weight, padding=2)
    x = torch.cat([x1, x2, x3], dim=1)
    return x

这里为了网络模型需要写成了一个类,这里假设输入的x也就是经过网络提取后的三通道特征图(当然不一定是三通道可以是任意通道)

如果是任意通道的话,使用torch.expand()向输入的维度前面进行扩充。如下:

  def blur(self, tensor_image):
    kernel = [[0.03797616, 0.044863533, 0.03797616],
        [0.044863533, 0.053, 0.044863533],
        [0.03797616, 0.044863533, 0.03797616]]
    
    min_batch=tensor_image.size()[0]
    channels=tensor_image.size()[1]
    out_channel=channels
    kernel = torch.FloatTensor(kernel).expand(out_channel,channels,3,3)
    self.weight = nn.Parameter(data=kernel, requires_grad=False)
 
    return F.conv2d(tensor_image,self.weight,1,1)

以上这篇pytorch 自定义卷积核进行卷积操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python五子棋游戏的设计与实现

这个python的小案例是五子棋游戏的实现,在这个案例中,我们可以实现五子棋游戏的两个玩家在指定的位置落子,画出落子后的棋盘,并且根据函数判断出输赢的功能。 这个案例的思路如下所示: 首...

uwsgi+nginx部署Django项目操作示例

uwsgi+nginx部署Django项目操作示例

本文实例讲述了uwsgi+nginx部署Django项目操作。分享给大家供大家参考,具体如下: uWSGI概述 uWSGI 是一个全功能的 HTTP 服务器,可以把 HTTP 协议转化成...

Python猴子补丁知识点总结

属性在运行时的动态替换,叫做猴子补丁(Monkey Patch)。 为什么叫猴子补丁 属性的运行时替换和猴子也没什么关系,关于猴子补丁的由来网上查到两种说法: 1.这个词原来为Guerr...

如何在python中写hive脚本

这篇文章主要介绍了如何在python中写hive脚本,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1、直接执行.sql脚本 im...

python实现随机梯度下降法

python实现随机梯度下降法

看这篇文章前强烈建议你看看上一篇python实现梯度下降法: 一、为什么要提出随机梯度下降算法 注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有)  也就是说每次更新...