关于pytorch处理类别不平衡的问题

yipeiwu_com6年前Python基础

当训练样本不均匀时,我们可以采用过采样、欠采样、数据增强等手段来避免过拟合。今天遇到一个3d点云数据集合,样本分布极不均匀,正例与负例相差4-5个数量级。数据增强效果就不会太好了,另外过采样也不太合适,因为是空间数据,新增的点有可能会对真实分布产生未知影响。所以采用欠采样来缓解类别不平衡的问题。

下面的代码展示了如何使用WeightedRandomSampler来完成抽样。

numDataPoints = 1000
data_dim = 5
bs = 100

# Create dummy data with class imbalance 9 to 1
data = torch.FloatTensor(numDataPoints, data_dim)
target = np.hstack((np.zeros(int(numDataPoints * 0.9), dtype=np.int32),
     np.ones(int(numDataPoints * 0.1), dtype=np.int32)))

print 'target train 0/1: {}/{}'.format(
 len(np.where(target == 0)[0]), len(np.where(target == 1)[0]))

class_sample_count = np.array(
 [len(np.where(target == t)[0]) for t in np.unique(target)])
weight = 1. / class_sample_count
samples_weight = np.array([weight[t] for t in target])

samples_weight = torch.from_numpy(samples_weight)
samples_weight = samples_weight.double()
sampler = WeightedRandomSampler(samples_weight, len(samples_weight))

target = torch.from_numpy(target).long()
train_dataset = torch.utils.data.TensorDataset(data, target)

train_loader = DataLoader(
 train_dataset, batch_size=bs, num_workers=1, sampler=sampler)

for i, (data, target) in enumerate(train_loader):
 print "batch index {}, 0/1: {}/{}".format(
  i,
  len(np.where(target.numpy() == 0)[0]),
  len(np.where(target.numpy() == 1)[0]))

核心部分为实际使用时替换下变量把sampler传递给DataLoader即可,注意使用了sampler就不能使用shuffle,另外需要指定采样点个数:

class_sample_count = np.array(
 [len(np.where(target == t)[0]) for t in np.unique(target)])
weight = 1. / class_sample_count
samples_weight = np.array([weight[t] for t in target])

samples_weight = torch.from_numpy(samples_weight)
samples_weight = samples_weight.double()
sampler = WeightedRandomSampler(samples_weight, len(samples_weight))

参考:https://discuss.pytorch.org/t/how-to-handle-imbalanced-classes/11264/2

以上这篇关于pytorch处理类别不平衡的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Php多进程实现代码

php多进程实现 PHP有一组进程控制函数(编译时需要–enable-pcntl与posix扩展),使得php能在nginx系统中实现跟c一样的创建子进程、使用exec函数执行程序、处理...

python同步windows和linux文件

python同步windows和linux文件

写python脚本的初衷,每次在windows编辑完文件后,想同步到linux上去,只能够登录服务器,然后再利用网络copy,重复性很大,就想着能不能写一个小脚本帮我同步。 逻辑:比对本...

Python for循环与range函数的使用详解

for 循环 For … in 语句是另一种循环语句,其特点是会在一系列对象上进行迭代(Iterates),即它会遍历序列中的每一个项目 注意: 1、else 部分是可选的。当循环中包含...

Python编程中字符串和列表的基本知识讲解

Python 字符串 字符串是 Python 中最常用的数据类型。我们可以使用引号来创建字符串。 创建字符串很简单,只要为变量分配一个值即可。例如: var1 = 'Hello W...

Cython编译python为so 代码加密示例

1. 编译出来的so比网上流传的其他方法小很多。 2. language_level  是python的主版本号,如果python版本是2.x,目前的版本Cython需要人工指...