pytorch sampler对数据进行采样的实现

yipeiwu_com6年前Python基础

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法: WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。

构建WeightedRandomSampler时需提供两个参数:每个样本的权重weights、共选取的样本总数num_samples,以及一个可选参数replacement。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights参数失效。

下面举例说明。

from dataSet import *
dataset = DogCat('data/dogcat/', transform=transform)

from torch.utils.data import DataLoader
# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weights的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]

print(weights)

from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(weights,\
                num_samples=9,\
                replacement=True)
dataloader = DataLoader(dataset,
            batch_size=3,
            sampler=sampler)
for datas, labels in dataloader:
  print(labels.tolist())

输出:

[2, 2, 1, 1, 2, 1, 1, 2]
[1, 1, 0]
[1, 0, 0]
[0, 0, 1]

github 地址:

https://github.com/WebLearning17/CommonTool

以上这篇pytorch sampler对数据进行采样的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 用三行代码提取PDF表格数据

Python 用三行代码提取PDF表格数据

从 PDF 表格中获取数据是一项痛苦的工作。不久前,一位开发者提供了一个名为 Camelot 的工具,使用三行代码就能从 PDF 文件中提取表格数据。 PDF 文件是一种非常常用的文件格...

python3获取url文件大小示例代码

python3获取url文件大小示例代码

在python3中,urllib2被替换为urllib.requeset,因此头文件中添加 import urllib.request as urllib2 def getRemot...

PyTorch中Tensor的拼接与拆分的实现

拼接张量:torch.cat() 、torch.stack() torch.cat(inputs, dimension=0) → Tensor 在给定维度上对输入的张量序列 s...

浅谈使用Python内置函数getattr实现分发模式

本文研究的主要是使用Python内置函数getattr实现分发模式的相关问题,具体介绍如下。 getattr 常见的使用模式是作为一个分发者。举个例子,如果你有一个程序可以以不同的格式输...

在Python中操作时间之strptime()方法的使用

 strptime()方法分析表示根据格式的时间字符串。返回值是一个struct_time所返回gmtime()或localtime()。 格式参数使用相同的指令使用strft...