pytorch sampler对数据进行采样的实现

yipeiwu_com5年前Python基础

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法: WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。

构建WeightedRandomSampler时需提供两个参数:每个样本的权重weights、共选取的样本总数num_samples,以及一个可选参数replacement。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights参数失效。

下面举例说明。

from dataSet import *
dataset = DogCat('data/dogcat/', transform=transform)

from torch.utils.data import DataLoader
# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weights的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]

print(weights)

from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(weights,\
                num_samples=9,\
                replacement=True)
dataloader = DataLoader(dataset,
            batch_size=3,
            sampler=sampler)
for datas, labels in dataloader:
  print(labels.tolist())

输出:

[2, 2, 1, 1, 2, 1, 1, 2]
[1, 1, 0]
[1, 0, 0]
[0, 0, 1]

github 地址:

https://github.com/WebLearning17/CommonTool

以上这篇pytorch sampler对数据进行采样的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用Eclipse写python程序

用Eclipse写python程序

在上一篇文章里已经写过如何安装python和在eclipse中配置python插件,这篇就不多说了,开始入门。 1.先新建一个python工程,File-->New-->Ot...

python学生信息管理系统

本文实例为大家分享了python学生信息管理系统的具体代码,供大家参考,具体内容如下 #编译环境为python3 #学生信息管理系统包括基本的信息功能,能够实现学生信息的输入,...

python实现字典(dict)和字符串(string)的相互转换方法

本文实例讲述了python实现string和dict的相互转换方法。分享给大家供大家参考,具体如下: 字典(dict)转为字符串(string) 我们可以比较容易的将字典(dict)类型...

Pycharm 创建 Django admin 用户名和密码的实例

Pycharm 创建 Django admin 用户名和密码的实例

1. 问题 使用PyCharm 创建完Django 项目 想登录admin 页面 却不知道用户名和密码。 用的默认sqlit 2.解决办法 2.1 打开manage.py 控制界面 2...

基于Python闭包及其作用域详解

基于Python闭包及其作用域详解

关于Python作用域的知识在python作用域有相应的笔记,这个笔记是关于Python闭包及其作用域的详细的笔记 如果在一个内部函数里,对一个外部作用域(但不是全局作用域)的变量进行引...