pytorch sampler对数据进行采样的实现

yipeiwu_com5年前Python基础

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法: WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。

构建WeightedRandomSampler时需提供两个参数:每个样本的权重weights、共选取的样本总数num_samples,以及一个可选参数replacement。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights参数失效。

下面举例说明。

from dataSet import *
dataset = DogCat('data/dogcat/', transform=transform)

from torch.utils.data import DataLoader
# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weights的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]

print(weights)

from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(weights,\
                num_samples=9,\
                replacement=True)
dataloader = DataLoader(dataset,
            batch_size=3,
            sampler=sampler)
for datas, labels in dataloader:
  print(labels.tolist())

输出:

[2, 2, 1, 1, 2, 1, 1, 2]
[1, 1, 0]
[1, 0, 0]
[0, 0, 1]

github 地址:

https://github.com/WebLearning17/CommonTool

以上这篇pytorch sampler对数据进行采样的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单分析Python中用fork()函数生成的子进程

python的os module中有fork()函数用于生成子进程,生成的子进程是父进程的镜像,但是它们有各自的地址空间,子进程复制一份父进程内存给自己,两个进程之 间的执行是相互独立的...

python使用pip安装模块出现ReadTimeoutError: HTTPSConnectionPool的解决方法

今天使用pip安装第三库时,有时会报错: pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(hos...

Python使用正则表达式过滤或替换HTML标签的方法详解

本文实例讲述了Python使用正则表达式过滤或替换HTML标签的方法。分享给大家供大家参考,具体如下: python正则表达式关键内容: python正则表达式转义符: . 匹配除换行符...

树莓派使用USB摄像头和motion实现监控

树莓派使用USB摄像头和motion实现监控

本文实例为大家分享了树莓派使用USB摄像头和motion实现监控的具体代码,供大家参考,具体内容如下 一、工具 1、树莓派3B 2、USB摄像头 二、操作步骤 1、安装motion...

在Python中如何传递任意数量的实参的示例代码

1 用法 在定义函数时,加上这样一个形参 "*形参名",就可以传递任意数量的实参啦: def make_tags(* tags): '''为书本打标签''' print('标...