pytorch sampler对数据进行采样的实现

yipeiwu_com5年前Python基础

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法: WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。

构建WeightedRandomSampler时需提供两个参数:每个样本的权重weights、共选取的样本总数num_samples,以及一个可选参数replacement。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights参数失效。

下面举例说明。

from dataSet import *
dataset = DogCat('data/dogcat/', transform=transform)

from torch.utils.data import DataLoader
# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weights的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]

print(weights)

from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(weights,\
                num_samples=9,\
                replacement=True)
dataloader = DataLoader(dataset,
            batch_size=3,
            sampler=sampler)
for datas, labels in dataloader:
  print(labels.tolist())

输出:

[2, 2, 1, 1, 2, 1, 1, 2]
[1, 1, 0]
[1, 0, 0]
[0, 0, 1]

github 地址:

https://github.com/WebLearning17/CommonTool

以上这篇pytorch sampler对数据进行采样的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

读取本地json文件,解析json(实例讲解)

模拟用户登录 # data.json 文件同目录下 [ { "id": 1, "username": "zhangshan", "password": "123qwe",...

Python openpyxl 遍历所有sheet 查找特定字符串的方法

如下所示: from openpyxl import workbook from openpyxl import load_workbook from openpyxl import...

Django多数据库的实现过程详解

有些项目可能涉及到使用多个数据库的情况,方法很简单。 1.在settings中设定DATABASE 比如要使用两个数据库: DATABASES = { 'default': {...

Numpy 将二维图像矩阵转换为一维向量的方法

以下的例子,将32x32的二维矩阵,装换成1x1024的向量 def image2vector (filename): returnVect=zeros((1,1024)) f=...

Python实现微信机器人的方法

Python实现微信机器人的方法

最近在学python的过程中无意间发现一个python库:wxpy,其可以实现让微信自动接收、处理消息并进行回复的一系列功能。感觉挺有意思的,便自行摸索学习,并成功地实现了其功能。 当我...