pytorch sampler对数据进行采样的实现

yipeiwu_com6年前Python基础

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法: WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。

构建WeightedRandomSampler时需提供两个参数:每个样本的权重weights、共选取的样本总数num_samples,以及一个可选参数replacement。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights参数失效。

下面举例说明。

from dataSet import *
dataset = DogCat('data/dogcat/', transform=transform)

from torch.utils.data import DataLoader
# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weights的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]

print(weights)

from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(weights,\
                num_samples=9,\
                replacement=True)
dataloader = DataLoader(dataset,
            batch_size=3,
            sampler=sampler)
for datas, labels in dataloader:
  print(labels.tolist())

输出:

[2, 2, 1, 1, 2, 1, 1, 2]
[1, 1, 0]
[1, 0, 0]
[0, 0, 1]

github 地址:

https://github.com/WebLearning17/CommonTool

以上这篇pytorch sampler对数据进行采样的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python交互环境下实现输入代码

Python交互环境下实现输入代码

Iamlaosong文 Python交互环境的提示符是“>>>”,命令行模式下输入python命令就可以进入这个交互环境进行交互会话。 在windows中,除了在she...

python使用内存zipfile对象在内存中打包文件示例

复制代码 代码如下:import zipfileimport StringIO class InMemoryZip(object):    def __in...

Django打印出在数据库中执行的语句问题

先给大家介绍下Django打印出在数据库中执行的语句 有时我们需要看models操作时对应的SQL语句, 可以用如下方法查看--- 在django project中的settings文件...

pandas 实现字典转换成DataFrame的方法

把dictd = {'A':0}转换成DataFrame, 首先,DataFrame的语法格式应为: import pandas as pd df = pd.DataFrame({'...

Python中常用的内置方法

Python中常用的内置方法

1.最大值 max(3,4) ##运行结果为4 2.最小值 min(3,4) ##运行结果为3 3.求和 sum(range(1,101)) ##求1~100的和...