pytorch中tensor张量数据类型的转化方式

yipeiwu_com5年前Python基础

1.tensor张量与numpy相互转换

tensor ----->numpy

import torch
a=torch.ones([2,5])

tensor([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]])
# **********************************    
b=a.numpy()

array([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]], dtype=float32)
numpy ----->tensor

import numpy as np
a=np.ones([2,5])

array([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]])
# **********************************    
b=torch.from_numpy(a)

tensor([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.]], dtype=torch.float64)

2.tensor张量与list相互转换

tensor—>list

a=torch.ones([1,5])

tensor([[1., 1., 1., 1., 1.]])
# ***********************************
b=a.tolist()

[[1.0, 1.0, 1.0, 1.0, 1.0]]



list—>tensor

a=list(range(1,6))

[1, 2, 3, 4, 5]
# **********************************
b=torch.tensor(a)

tensor([1, 2, 3, 4, 5])

3.tensor张量见类型转换

构建一个新的张量,你要转变成不同的类型只需要根据自己的需求选择即可

tensor = torch.Tensor(3, 5)

# torch.long() 将tensor投射为long类型
newtensor = tensor.long()

# torch.half()将tensor投射为半精度浮点类型
newtensor = tensor.half()

# torch.int()将该tensor投射为int类型
newtensor = tensor.int()

# torch.double()将该tensor投射为double类型
newtensor = tensor.double()

# torch.float()将该tensor投射为float类型
newtensor = tensor.float()

# torch.char()将该tensor投射为char类型
newtensor = tensor.char()

# torch.byte()将该tensor投射为byte类型
newtensor = tensor.byte()

# torch.short()将该tensor投射为short类型
newtensor = tensor.short()

4.type_as() 将张量转换成指定类型张量

>>> a=torch.Tensor(2,5)
>>> a
tensor([[1.9431e-19, 4.8613e+30, 1.4603e-19, 2.0704e-19, 4.7429e+30],
    [1.6530e+19, 1.8254e+31, 1.4607e-19, 6.8801e+16, 1.8370e+25]])
>>> b=torch.IntTensor(1,2)
>>> b
tensor([[16843009,    1]], dtype=torch.int32)
>>> a.type_as(b)
tensor([[     0, -2147483648,      0,      0, -2147483648],
    [-2147483648, -2147483648,      0, -2147483648, -2147483648]],
    dtype=torch.int32)
>>> a
tensor([[1.9431e-19, 4.8613e+30, 1.4603e-19, 2.0704e-19, 4.7429e+30],
    [1.6530e+19, 1.8254e+31, 1.4607e-19, 6.8801e+16, 1.8370e+25]])

以上这篇pytorch中tensor张量数据类型的转化方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用json序列化datetime类型实例解析

使用python的json模块序列化时间或者其他不支持的类型时会抛异常,例如下面的代码: # -*- coding: cp936 -*- from datetime import d...

np.newaxis 实现为 numpy.ndarray(多维数组)增加一个轴

如下所示: >> type(np.newaxis) NoneType >> np.newaxis == None True np.newaxis 在使用和功...

python内存管理机制原理详解

python内存管理机制原理详解

python内存管理机制: 引用计数 垃圾回收 内存池 1. 引用计数 当一个python对象被引用时 其引用计数增加 1 ; 当其不再被变量引用时 引用计数减 1...

详解supervisor使用教程

详解supervisor使用教程

A Process Control System 使用b/s架构、运行在类Unix系统上一个进程监控管理系统它可以使进程以daemon方式运行,并且一直监控进程,在意外退出时能自动重启进...

详解Python locals()的陷阱

在工作中, 有时候会遇到一种情况: 动态地进行变量赋值, 不管是局部变量还是全局变量, 在我们绞尽脑汁的时候, Python已经为我们解决了这个问题. Python的命名空间通过一种字典...