解决Pytorch训练过程中loss不下降的问题

yipeiwu_com6年前Python基础

在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题。出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等。不过除了这些常规的原因,还有一种难以发现的原因:在计算loss时数据维数不匹配。

下面是我的代码:

loss_function = torch.nn.MSE_loss()
optimizer.zero_grad()
output = model(x_train)
loss = loss_function(output, y_train)
loss.backward()
optimizer.step()

要特别注意计算loss时网络输出值output和真实值y_train的维数必须完全匹配,否则训练误差不下降,无法训练。这种错误在训练一维数据时很容易忽略,要十分注意。

以上这篇解决Pytorch训练过程中loss不下降的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简述Python中的进程、线程、协程

进程、线程和协程之间的关系和区别也困扰我一阵子了,最近有一些心得,写一下。 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度。 线程拥有自己独立的栈和共享的堆,共享堆...

对Python定时任务的启动和停止方法详解

在python中我们可以使用APScheduler进行定时任务。 APScheduler的具体编码这里就不介绍了。主要说下在终端中启动和停止任务。 一、运行计划任务的python脚本...

Python http接口自动化测试框架实现方法示例

Python http接口自动化测试框架实现方法示例

本文实例讲述了Python http接口自动化测试框架实现方法。分享给大家供大家参考,具体如下: 一、测试需求描述 对服务后台一系列的http接口功能测试。 输入:根据接口描述构造不同的...

linux系统使用python监测系统负载脚本分享

linux系统使用python监测系统负载脚本分享

复制代码 代码如下:#!/usr/bin/env Python   import os def load_stat():     loa...

Python迭代器与生成器基本用法分析

本文实例讲述了Python迭代器与生成器基本用法。分享给大家供大家参考,具体如下: 迭代器 可以进行for循环的数据类型包括以下两种: 1. 集合数据类型比如list,tuple,dic...