PyTorch中的padding(边缘填充)操作方式

yipeiwu_com5年前Python基础

简介

我们知道,在对图像执行卷积操作时,如果不对图像边缘进行填充,卷积核将无法到达图像边缘的像素,而且卷积前后图像的尺寸也会发生变化,这会造成许多麻烦。

因此现在各大深度学习框架的卷积层实现上基本都配备了padding操作,以保证图像输入输出前后的尺寸大小不变。例如,若卷积核大小为3x3,那么就应该设定padding=1,即填充1层边缘像素;若卷积核大小为7x7,那么就应该设定padding=3,填充3层边缘像素;也就是padding大小一般设定为核大小的一半。在pytorch的卷积层定义中,默认的padding为零填充。

self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=7, padding=3)

padding的种类及其pytorch定义

padding,即边缘填充,可以分为四类:零填充,常数填充,镜像填充,重复填充。

1.零填充

对图像或者张量的边缘进行补零填充操作:

class ZeroPad2d(ConstantPad2d):
 # Pads the input tensor boundaries with zero.
 def __init__(self, padding):
  super(ZeroPad2d, self).__init__(padding, 0)

2.常数填充

定义一个常数来对图像或者张量的边缘进行填充,若该常数等于0则等价于零填充。

class ConstantPad2d(_ConstantPadNd):
 # Pads the input tensor boundaries with a constant value.
 def __init__(self, padding, value):
  super(ConstantPad2d, self).__init__(value)
  self.padding = _quadruple(padding)

3.镜像填充

对图像或者张量的边缘进行镜像对称的填充,示例如下:

>>> m = nn.ReflectionPad2d(2)
>>> input = torch.arange(9).reshape(1, 1, 3, 3)
>>> input
 
(0 ,0 ,.,.) =
 0 1 2
 3 4 5
 6 7 8
[torch.FloatTensor of size (1,1,3,3)]
 
>>> m(input)
 
(0 ,0 ,.,.) =
 8 7 6 7 8 7 6
 5 4 3 4 5 4 3
 2 1 0 1 2 1 0
 5 4 3 4 5 4 3
 8 7 6 7 8 7 6
 5 4 3 4 5 4 3
 2 1 0 1 2 1 0
class ReflectionPad2d(_ReflectionPadNd):
 # Pads the input tensor using the reflection of the input boundary.
 
 def __init__(self, padding):
  super(ReflectionPad2d, self).__init__()
  self.padding = _quadruple(padding)

4.重复填充

对图像或者张量的边缘进行重复填充,就是说直接用边缘的像素值来填充。示例如下:

>>> m = nn.ReplicationPad2d(2)
>>> input = torch.arange(9).reshape(1, 1, 3, 3)
>>> input
 
(0 ,0 ,.,.) =
 0 1 2
 3 4 5
 6 7 8
[torch.FloatTensor of size (1,1,3,3)]
 
>>> m(input)
 
(0 ,0 ,.,.) =
 0 0 0 1 2 2 2
 0 0 0 1 2 2 2
 0 0 0 1 2 2 2
 3 3 3 4 5 5 5
 6 6 6 7 8 8 8
 6 6 6 7 8 8 8
 6 6 6 7 8 8 8
[torch.FloatTensor of size (1,1,7,7)]
class ReplicationPad2d(_ReplicationPadNd):
 # Pads the input tensor using replication of the input boundary.
 
 def __init__(self, padding):
  super(ReplicationPad2d, self).__init__()
  self.padding = _quadruple(padding)

实际应用

在许多计算机视觉任务中,例如图像分类,zero padding已经能够满足要求。但是不结合实际地乱用也是不行的。比方说,在图像增强/图像生成领域,zero padding可能会导致边缘出现伪影,如下所示:

这时候,可以改用镜像填充来代替零填充操作。我们定义一个新的padding层,然后把卷积层里的padding参数置为0.

具体写法如下:

class DEMO(nn.Module):
 
 def __init__(self):
  super(DEMO, self).__init__()
  self.pad = nn.ReflectionPad2d(1)
  self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=0)
 
 def forward(self, x):
  x = self.pad(x)
  x = self.conv(x)
  return F.relu(x)

以低光照增强任务为例,最终对比效果如下图。零填充会产生边缘伪影,而镜像填充很好地缓解了这一效应。

以上这篇PyTorch中的padding(边缘填充)操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 中字符串拼接的多种方法

python拼接字符串一般有以下几种方法: ①直接通过(+)操作符拼接 s = 'Hello'+' '+'World'+'!' print(s) 输出结果: Hello Worl...

pytorch使用指定GPU训练的实例

本文适合多GPU的机器,并且每个用户需要单独使用GPU训练。 虽然pytorch提供了指定gpu的几种方式,但是使用不当的话会遇到out of memory的问题,主要是因为pytorc...

python之线程通过信号pyqtSignal刷新ui的方法

python之线程通过信号pyqtSignal刷新ui的方法

第一部分:UI界面设计 界面效果图如下: ui文件(可拉动控件自行创建一个button和text) <?xml version="1.0" encoding="UTF...

Python线程障碍对象Barrier原理详解

python线程Barrier俗称障碍对象,也称栅栏,也叫屏障。 一.线程障碍对象Barrier简介 # 导入线程模块 import threading # 障碍对象barrier...

python队列通信:rabbitMQ的使用(实例讲解)

python队列通信:rabbitMQ的使用(实例讲解)

(一)、前言 为什么引入消息队列? 1.程序解耦 2.提升性能 3.降低多业务逻辑复杂度 (二)、python操作rabbit mq rabbitmq配置安装基本使用参见上节文章,不再复...