PyTorch中的padding(边缘填充)操作方式

yipeiwu_com6年前Python基础

简介

我们知道,在对图像执行卷积操作时,如果不对图像边缘进行填充,卷积核将无法到达图像边缘的像素,而且卷积前后图像的尺寸也会发生变化,这会造成许多麻烦。

因此现在各大深度学习框架的卷积层实现上基本都配备了padding操作,以保证图像输入输出前后的尺寸大小不变。例如,若卷积核大小为3x3,那么就应该设定padding=1,即填充1层边缘像素;若卷积核大小为7x7,那么就应该设定padding=3,填充3层边缘像素;也就是padding大小一般设定为核大小的一半。在pytorch的卷积层定义中,默认的padding为零填充。

self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=7, padding=3)

padding的种类及其pytorch定义

padding,即边缘填充,可以分为四类:零填充,常数填充,镜像填充,重复填充。

1.零填充

对图像或者张量的边缘进行补零填充操作:

class ZeroPad2d(ConstantPad2d):
 # Pads the input tensor boundaries with zero.
 def __init__(self, padding):
  super(ZeroPad2d, self).__init__(padding, 0)

2.常数填充

定义一个常数来对图像或者张量的边缘进行填充,若该常数等于0则等价于零填充。

class ConstantPad2d(_ConstantPadNd):
 # Pads the input tensor boundaries with a constant value.
 def __init__(self, padding, value):
  super(ConstantPad2d, self).__init__(value)
  self.padding = _quadruple(padding)

3.镜像填充

对图像或者张量的边缘进行镜像对称的填充,示例如下:

>>> m = nn.ReflectionPad2d(2)
>>> input = torch.arange(9).reshape(1, 1, 3, 3)
>>> input
 
(0 ,0 ,.,.) =
 0 1 2
 3 4 5
 6 7 8
[torch.FloatTensor of size (1,1,3,3)]
 
>>> m(input)
 
(0 ,0 ,.,.) =
 8 7 6 7 8 7 6
 5 4 3 4 5 4 3
 2 1 0 1 2 1 0
 5 4 3 4 5 4 3
 8 7 6 7 8 7 6
 5 4 3 4 5 4 3
 2 1 0 1 2 1 0
class ReflectionPad2d(_ReflectionPadNd):
 # Pads the input tensor using the reflection of the input boundary.
 
 def __init__(self, padding):
  super(ReflectionPad2d, self).__init__()
  self.padding = _quadruple(padding)

4.重复填充

对图像或者张量的边缘进行重复填充,就是说直接用边缘的像素值来填充。示例如下:

>>> m = nn.ReplicationPad2d(2)
>>> input = torch.arange(9).reshape(1, 1, 3, 3)
>>> input
 
(0 ,0 ,.,.) =
 0 1 2
 3 4 5
 6 7 8
[torch.FloatTensor of size (1,1,3,3)]
 
>>> m(input)
 
(0 ,0 ,.,.) =
 0 0 0 1 2 2 2
 0 0 0 1 2 2 2
 0 0 0 1 2 2 2
 3 3 3 4 5 5 5
 6 6 6 7 8 8 8
 6 6 6 7 8 8 8
 6 6 6 7 8 8 8
[torch.FloatTensor of size (1,1,7,7)]
class ReplicationPad2d(_ReplicationPadNd):
 # Pads the input tensor using replication of the input boundary.
 
 def __init__(self, padding):
  super(ReplicationPad2d, self).__init__()
  self.padding = _quadruple(padding)

实际应用

在许多计算机视觉任务中,例如图像分类,zero padding已经能够满足要求。但是不结合实际地乱用也是不行的。比方说,在图像增强/图像生成领域,zero padding可能会导致边缘出现伪影,如下所示:

这时候,可以改用镜像填充来代替零填充操作。我们定义一个新的padding层,然后把卷积层里的padding参数置为0.

具体写法如下:

class DEMO(nn.Module):
 
 def __init__(self):
  super(DEMO, self).__init__()
  self.pad = nn.ReflectionPad2d(1)
  self.conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=0)
 
 def forward(self, x):
  x = self.pad(x)
  x = self.conv(x)
  return F.relu(x)

以低光照增强任务为例,最终对比效果如下图。零填充会产生边缘伪影,而镜像填充很好地缓解了这一效应。

以上这篇PyTorch中的padding(边缘填充)操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用PyCharm进行远程开发和调试

python使用PyCharm进行远程开发和调试

背景描述 有时候Python应用的代码在本地开发环境运行十分正常,但是放到线上以后却出现了莫名其妙的异常,经过再三排查以后还是找不到问题原因,于是就在想,要是可以在服务器环境中进行单步跟...

python追加元素到列表的方法

本文实例讲述了python追加元素到列表的方法。分享给大家供大家参考。具体实现方法如下: scores = ["1","2","3"] # add a score score = i...

对Python3 解析html的几种操作方式小结

解析html是爬虫后的重要的一个处理数据的环节。一下记录解析html的几种方式。 先介绍基础的辅助函数,主要用于获取html并输入解析后的结束 #把传递解析函数,便于下面的修改 de...

说一说Python logging

说一说Python logging

最近有个需求是把以前字符串输出的log 改为json 格式,看了别人的例子,还是有些比较茫然,索性就把logging 整个翻了一边,做点小总结. 初看log 在程序中, log 的用处写...

Python+Pandas 获取数据库并加入DataFrame的实例

实例如下所示: import pandas as pd import sys import imp imp.reload(sys) from sqlalchemy import cr...