在Pytorch中计算卷积方法的区别详解(conv2d的区别)

yipeiwu_com5年前Python基础

在二维矩阵间的运算:

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

对由多个特征平面组成的输入信号进行2D的卷积操作。详解

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

在由多个输入平面组成的输入图像上应用2D卷积,这个操作其实和上面的操作是一样的,只不过这个操作多用于计算一组卷积核对于输入的卷积结果,而上面的那条代码更多的则是用在定义网络中去。详解

以上这篇在Pytorch中计算卷积方法的区别详解(conv2d的区别)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用Python生成文件md5校验值函数的方法

前言 在linux有个命令叫做md5sum,能生成文件的md5值,一般情况下都会将结果记录到一个文件中用于校验使用,比如会这样使用: [crazyant@localhost Pyth...

Python实现自动登录百度空间的方法

本文实例讲述了Python实现自动登录百度空间的方法。分享给大家供大家参考,具体如下: 开发环境:Fedora12 + Python2.6.2 #!/usr/bin/python #...

Python判断Abundant Number的方法

本文实例讲述了Python判断Abundant Number的方法。分享给大家供大家参考。具体如下: Abundant Number,中文译成:盈数(又称 丰数, 过剩数abundant...

对Pytorch中Tensor的各种池化操作解析

AdaptiveAvgPool1d(N) 对一个C*H*W的三维输入Tensor, 池化输出为C*H*N, 即按照H轴逐行对W轴平均池化 >>> a = torch...

python 解析XML python模块xml.dom解析xml实例代码

一 、python模块 xml.dom 解析XML的APIminidom.parse(filename)加载读取XML文件 doc.documentElement获取XML文档对象 no...