pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解

yipeiwu_com5年前Python基础

如题:只需要给定输出特征图的大小就好,其中通道数前后不发生变化。具体如下:

AdaptiveAvgPool2d

CLASStorch.nn.AdaptiveAvgPool2d(output_size)[SOURCE]

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

Parameters

output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a int, or None which means the size will be the same as that of the input.

Examples

>>> # target output size of 5x7
>>> m = nn.AdaptiveAvgPool2d((5,7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveAvgPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> input = torch.randn(1, 3, 3, 3)
>>> input
tensor([[[[ 0.6574, 1.5219, -1.3590],
   [-0.1561, 2.7337, -1.8701],
   [-0.8572, 1.0238, -1.9784]],
 
   [[ 0.4284, 1.4862, 0.3352],
   [-0.7796, -0.8020, -0.1243],
   [-1.2461, -1.7069, 0.1517]],
 
   [[ 1.4593, -0.1287, 0.5369],
   [ 0.6562, 0.0616, 0.2611],
   [-1.0301, 0.4097, -1.9269]]]])
>>> m = nn.AdaptiveAvgPool2d((2, 2))
>>> output = m(input)
>>> output
tensor([[[[ 1.1892, 0.2566],
   [ 0.6860, -0.0227]],
 
   [[ 0.0833, 0.2238],
   [-1.1337, -0.6204]],
 
   [[ 0.5121, 0.1827],
   [ 0.0243, -0.2986]]]])
>>> 0.6574+1.5219+2.7337-0.1561
4.7569
>>> 4.7569/4
1.189225
>>> 

以上这篇pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈python新式类和旧式类区别

python的新式类是2.2版本引进来的,我们可以将之前的类叫做经典类或者旧式类。 为什么要在2.2中引进new style class呢?官方给的解释是: 为了统一类(class)和类...

使用Python读写及压缩和解压缩文件的示例

读写文件 首先看一个例子: f = open('thefile.txt','w') #以写方式打开, try: f.write('wokao') finally: f.c...

Python实现检测文件MD5值的方法示例

本文实例讲述了Python实现检测文件MD5值的方法。分享给大家供大家参考,具体如下: 前面介绍过Python计算文件md5值的方法,这里分析一下Python检测文件MD5值的另一种实现...

selenium+python自动化测试之多窗口切换

selenium+python自动化测试之多窗口切换

在很多页面上都有可点击的链接,点击这些链接会打开一个新的窗口,这时如果要在新打开的窗口中操作页面,就需要先切换到新窗口中,如果不进行切换操作,还是操作的上一个页面窗口 浏览器窗口的切换通...

Sanic框架应用部署方法详解

本文实例讲述了Sanic框架应用部署方法。分享给大家供大家参考,具体如下: 简介 Sanic是一个类似Flask的Python 3.5+ Web服务器,它的写入速度非常快。除了Flask...