pytorch中torch.max和Tensor.view函数用法详解

yipeiwu_com5年前Python基础

torch.max()

1.

torch.max()简单来说是返回一个tensor中的最大值。

例如:

>>> si=torch.randn(4,5)
>>> print(si)
tensor([[ 1.1659, -1.5195, 0.0455, 1.7610, -0.2064],
    [-0.3443, 2.0483, 0.6303, 0.9475, 0.4364],
    [-1.5268, -1.0833, 1.6847, 0.0145, -0.2088],
    [-0.8681, 0.1516, -0.7764, 0.8244, -1.2194]])

>>> print(torch.max(si))
tensor(2.0483)

2.

这个函数的参数中还有一个dim参数,使用方法为re = torch.max(Tensor,dim),返回的re为一个二维向量,其中re[0]为最大值的Tensor,re[1]为最大值对应的index的Tensor。

例如:

>>> print(torch.max(si,0)[0])
tensor([1.1659, 2.0483, 1.6847, 1.7610, 0.4364])

注意,Tensor的维度从0开始算起。在torch.max()中指定了dim之后,比如对于一个3x4x5的Tensor,指定dim为0后,得到的结果是维度为0的“每一行”对应位置求最大的那个值,此时输出的Tensor的维度是4x5.

对于简单的二维Tensor,如上面例子的这个4x5的Tensor。指定dim为0,则给出的结果是4行做比较之后的最大值;如果指定dim为1,则给出的结果是5列做比较之后的最大值,且此处做比较时是按照位置分别做比较,得到一个新的Tensor。

Tensor.view()

简单说就是一个把tensor 进行reshape的操作。

>>> a=torch.randn(3,4,5,7)
>>> b = a.view(1,-1)
>>> print(b.size())
torch.Size([1, 420])

其中参数-1表示剩下的值的个数一起构成一个维度。如上例中,第一个参数1将第一个维度的大小设定成1,后一个-1就是说第二个维度的大小=元素总数目/第一个维度的大小,此例中为3*4*5*7/1=420.

>>> d = a.view(a.size(0),a.size(1),-1)
>>> print(d.size())
torch.Size([3, 4, 35])

 

>>> e=a.view(4,-1,5)
>>> print(e.size())
torch.Size([4, 21, 5])

以上这篇pytorch中torch.max和Tensor.view函数用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3.7+tkinter实现查询界面功能

Python3.7+tkinter实现查询界面功能

Tkinter 是 Python 的标准 GUI 库。Python 使用 Tkinter 可以快速的创建 GUI 应用程序。 这篇文章使用tkinter实现一个简单的查询界面 #!/...

Pycharm更换python解释器的方法

安装了pycharm之后有一个新装的python解释器,顶替了之前系统的python 那样的话,原来利用pip安装的一些库会无法import. 要么加入环境变量,要么更换运行的解释器:...

Python断言assert的用法代码解析

在开发一个程序时候,与其让它运行时崩溃,不如在它出现错误条件时就崩溃(返回错误)。这时候断言assert 就显得非常有用。 python assert断言是声明布尔值必须为真的判定,如果...

python版微信跳一跳游戏辅助

python版微信跳一跳游戏辅助

本文实例为大家分享了微信跳一跳游戏辅助python代码,供大家参考,具体内容如下 import os import PIL import numpy import matplotli...

Python字符串拼接六种方法介绍

Python字符串拼接的6种方法: 1.加号 第一种,有编程经验的人,估计都知道很多语言里面是用加号连接两个字符串,Python里面也是如此直接用“+”来连接两个字符串; print...