pytorch中的上采样以及各种反操作,求逆操作详解

yipeiwu_com5年前Python基础

import torch.nn.functional as F

import torch.nn as nn

F.upsample(input, size=None, scale_factor=None,mode='nearest', align_corners=None)

  r"""Upsamples the input to either the given :attr:`size` or the given
  :attr:`scale_factor`
  The algorithm used for upsampling is determined by :attr:`mode`.
  Currently temporal, spatial and volumetric upsampling are supported, i.e.
  expected inputs are 3-D, 4-D or 5-D in shape.
  The input dimensions are interpreted in the form:
  `mini-batch x channels x [optional depth] x [optional height] x width`.
  The modes available for upsampling are: `nearest`, `linear` (3D-only),
  `bilinear` (4D-only), `trilinear` (5D-only)
  Args:
    input (Tensor): the input tensor
    size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
      output spatial size.
    scale_factor (int): multiplier for spatial size. Has to be an integer.
    mode (string): algorithm used for upsampling:
      'nearest' | 'linear' | 'bilinear' | 'trilinear'. Default: 'nearest'
    align_corners (bool, optional): if True, the corner pixels of the input
      and output tensors are aligned, and thus preserving the values at
      those pixels. This only has effect when :attr:`mode` is `linear`,
      `bilinear`, or `trilinear`. Default: False
  .. warning::
    With ``align_corners = True``, the linearly interpolating modes
    (`linear`, `bilinear`, and `trilinear`) don't proportionally align the
    output and input pixels, and thus the output values can depend on the
    input size. This was the default behavior for these modes up to version
    0.3.1. Since then, the default behavior is ``align_corners = False``.
    See :class:`~torch.nn.Upsample` for concrete examples on how this
    affects the outputs.
  """

nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1)

"""
Parameters: 
  in_channels (int) – Number of channels in the input image
  out_channels (int) – Number of channels produced by the convolution
  kernel_size (int or tuple) – Size of the convolving kernel
  stride (int or tuple, optional) – Stride of the convolution. Default: 1
  padding (int or tuple, optional) – kernel_size - 1 - padding zero-padding will be added to both sides of each dimension in the input. Default: 0
  output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0
  groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
  bias (bool, optional) – If True, adds a learnable bias to the output. Default: True
  dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
"""

计算方式:

定义:nn.MaxUnpool2d(kernel_size, stride=None, padding=0)

调用:

def forward(self, input, indices, output_size=None):
  return F.max_unpool2d(input, indices, self.kernel_size, self.stride,
             self.padding, output_size)
 
  r"""Computes a partial inverse of :class:`MaxPool2d`.
  :class:`MaxPool2d` is not fully invertible, since the non-maximal values are lost.
  :class:`MaxUnpool2d` takes in as input the output of :class:`MaxPool2d`
  including the indices of the maximal values and computes a partial inverse
  in which all non-maximal values are set to zero.
  .. note:: `MaxPool2d` can map several input sizes to the same output sizes.
       Hence, the inversion process can get ambiguous.
       To accommodate this, you can provide the needed output size
       as an additional argument `output_size` in the forward call.
       See the Inputs and Example below.
  Args:
    kernel_size (int or tuple): Size of the max pooling window.
    stride (int or tuple): Stride of the max pooling window.
      It is set to ``kernel_size`` by default.
    padding (int or tuple): Padding that was added to the input
  Inputs:
    - `input`: the input Tensor to invert
    - `indices`: the indices given out by `MaxPool2d`
    - `output_size` (optional) : a `torch.Size` that specifies the targeted output size
  Shape:
    - Input: :math:`(N, C, H_{in}, W_{in})`
    - Output: :math:`(N, C, H_{out}, W_{out})` where
  计算公式:见下面
  Example: 见下面
  """

F. max_unpool2d(input, indices, kernel_size, stride=None, padding=0, output_size=None)

见上面的用法一致!

def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
         output_size=None):
  r"""Computes a partial inverse of :class:`MaxPool2d`.
  See :class:`~torch.nn.MaxUnpool2d` for details.
  """
  pass

以上这篇pytorch中的上采样以及各种反操作,求逆操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

VSCode Python开发环境配置的详细步骤

VSCode Python开发环境配置的详细步骤

准备工作 安装anaconda,官网下载安装,笔者安装在"D:\Anaconda3" 安装好之后,查看环境变量path中是否有如下路径,没有的话添加进去 D:\Anaconda3 D...

手写一个python迭代器过程详解

分析 我们都知道一个可迭代对象可以通过iter()可以返回一个迭代器。 如果想要一个对象称为可迭代对象,即可以使用for,那么必须实现__iter __()方法。 在一个类...

使用memory_profiler监测python代码运行时内存消耗方法

使用memory_profiler监测python代码运行时内存消耗方法

前几天一直在寻找能够输出python函数运行时最大内存消耗的方式,看了一堆的博客和知乎,也尝试了很多方法,最后选择使用memory_profiler中的mprof功能来进行测量的,它的原...

python读取ini配置文件过程示范

这篇文章主要介绍了python读取ini配置文件过程示范,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 安装 pip instal...

Django Admin实现上传图片校验功能

Django Admin实现上传图片校验功能

 Django 为未来的开发人员提供了许多功能:一个成熟的标准库,一个活跃的用户社区,以及 Python 语言的所有好处。虽然其他 Web 框架也声称能提供同样的内容,但 Dj...