tensorflow实现tensor中满足某一条件的数值取出组成新的tensor

yipeiwu_com6年前Python基础

首先使用tf.where()将满足条件的数值索引取出来,在numpy中,可以直接用矩阵引用索引将满足条件的数值取出来,但是在tensorflow中这样是不行的。所幸,tensorflow提供了tf.gather()和tf.gather_nd()函数。

看下面这一段代码:

import tensorflow as tf
sess = tf.Session()
def get_tensor():
  x = tf.random_uniform((5, 4))
  ind = tf.where(x>0.5)
  y = tf.gather_nd(x, ind)
  return x, ind, y

在上述代码中,输出分别是原始的tensor x,x中满足特定条件(此处为>0.5)的数值的索引,以及x中满足特定条件的数值。执行以下步骤,观察三个tensor对应的数值:

x, ind, y = get_tensor()
x_, ind_, y_ = sess.run([x, ind, y])

可以得到如下结果:

可以看到,上述结果中将tensor x中大于0.5的数值取出来组成了一个新的tensor y。

如果我们将代码中的tf.gather_nd替换成tf.gather会发生什么呢?由于结果不方便展示,这里不放结果了,tf.gather适用于index为一维的情况,在本例中,index为2维,如果选用tf.gather的话,对应的x, ind, y的维数分别如下:

x.shape = (5, 4)
ind.shape = (9, 2)
y.shape = (9, 2, 4)

以上这篇tensorflow实现tensor中满足某一条件的数值取出组成新的tensor就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解python里使用正则表达式的全匹配功能

详解python里使用正则表达式的全匹配功能 python中很多匹配,比如搜索任意位置的search()函数,搜索边界的match()函数,现在还需要学习一个全匹配函数,就是搜索的字符与...

PyQt5响应回车事件的方法

我在编程时遇到一个问题,就是PyQt5不能响应回车时间,也就是下面这段代码不能执行: if (event.key() == Qt.Key_Enter): 解决方法:打印出事件码:...

python使用knn实现特征向量分类

这是一个使用knn把特征向量进行分类的demo。 Knn算法的思想简单说就是:看输入的sample点周围的k个点都属于哪个类,哪个类的点最多,就把sample归为哪个类。也就是说,训练集...

python如何定义带参数的装饰器

本文实例为大家分享了python定义带参数装饰器的具体代码,供大家参考,具体内容如下 案例:        实现一个装饰器,用...

python中使用smtplib和email模块发送邮件实例

SMTP模块这么多已定义的类中,我们最常用的的还是smtplib.SMTP类,就具体看看该类的用法:smtp实例封装一个smtp连接,它支持所有的SMTP和ESMTP操作指令,如果hos...