Tensorflow读取并输出已保存模型的权重数值方式

yipeiwu_com6年前Python基础

这篇文章是为了对网络模型的权重输出,可以用来转换成其他框架的模型。

import tensorflow as tf
from tensorflow.python import pywrap_tensorflow

#首先,使用tensorflow自带的python打包库读取模型
model_reader = pywrap_tensorflow.NewCheckpointReader(r"model.ckpt")

#然后,使reader变换成类似于dict形式的数据
var_dict = model_reader.get_variable_to_shape_map()

#最后,循环打印输出
for key in var_dict:
  print("variable name: ", key)
  print(model_reader.get_tensor(key))

结果(其中一个权重的示例)

........
variable name: InceptionV3/Mixed_7c/Branch_3/Conv2d_0b_1x1/weights
[[[[ 0.00013783 -0.00251428 0.02235526 ... -0.01409702 0.00340105
  -0.00752808]
  [ 0.01590012 -0.00258413 -0.00627338 ... -0.03600493 0.01220086
  -0.01254225]
  [-0.02394262 -0.00764508 -0.00895328 ... -0.01731405 0.03568469
   0.00918952]
  ...
  [-0.01865693 -0.00358359 -0.02342288 ... 0.00935838 0.00367858
  -0.00976252]
  [ 0.01297642 0.00223457 0.00652326 ... -0.00762609 -0.0136022
  -0.01129473]
  [-0.01395879 -0.00920246 0.01061887 ... 0.0236958  0.00041993
  -0.01291134]]]]
......

以上这篇Tensorflow读取并输出已保存模型的权重数值方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy添加新的维度:newaxis的方法

numpy添加新的维度:newaxis的方法

numpy中包含的newaxis可以给原数组增加一个维度 np.newaxis放的位置不同,产生的新数组也不同 一维数组 x = np.random.randint(1, 8, si...

Python多进程通信Queue、Pipe、Value、Array实例

Python多进程通信Queue、Pipe、Value、Array实例

queue和pipe的区别: pipe用来在两个进程间通信。queue用来在多个进程间实现通信。 此两种方法为所有系统多进程通信的基本方法,几乎所有的语言都支持此两种方法。 1)Queu...

python序列化与数据持久化实例详解

python序列化与数据持久化实例详解

本文实例讲述了python序列化与数据持久化。分享给大家供大家参考,具体如下: 数据持久化的方式有: 1.普通文件无格式写入:将数据直接写入到文件中 2.普通序列化写入:json,pic...

mac下给python3安装requests库和scrapy库的实例

众所周知,Mac自带python2,但无奈我们想使用新版本,因此我们需要安装python3 安装python3我使用了homebrew,网上也有很多教程,这里不多说 为python3安装...

用Python进行基础的函数式编程的教程

许多函数式文章讲述的是组合,流水线和高阶函数这样的抽象函数式技术。本文不同,它展示了人们每天编写的命令式,非函数式代码示例,以及将这些示例转换为函数式风格。 文章的第一部分将一些短小的数...