Tensorflow的常用矩阵生成方式

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧!

#全0和全1矩阵

v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") 

v2 = tf.Variable(tf.ones([10,5]), name="v2") 
 
#填充单值矩阵 
v3 = tf.Variable(tf.fill([2,3], 9)) 

 
#常量矩阵 
v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) 
v4_2 = tf.constant(-1.0, shape=[2, 3]) 


# 和v4_1形状一样的全1或全0矩阵

v5_1=tf.ones_like(v4_1)

v5_2=tf.zeros_like(v4_1) 


#生成等差数列 
v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64 
v7_1 = tf.range(10, 20, 3)#just int32 
 
#生成各种随机数据矩阵 

#平均分布

v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1")) 
#正态分布

v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2")) 

#正态分布,但是去掉2sigma外的数字

v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3")) 

#把这3个行重排列
v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5") 

以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据

存取方式是:

np.save("v1.npy",sess.run(v1))#numpy save v1 as file 
test_a = np.load("v1.npy") 
print test_a[1,2] 

这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Ubuntu 下 vim 搭建python 环境 配置

1. 安装完整的vim # apt-get install vim-gnome 2. 安装ctags,ctags用于支持taglist,必需! # apt-get instal...

Python保存MongoDB上的文件到本地的方法

本文实例讲述了Python保存MongoDB上的文件到本地的方法。分享给大家供大家参考,具体如下: MongoDB上的文档通过GridFS来操作,Python也可以通过pymongo连接...

在Django框架中编写Contact表单的教程

虽然我们一直使用书籍搜索的示例表单,并将起改进的很完美,但是这还是相当的简陋: 只包含一个字段,q。这简单的例子,我们不需要使用Django表单库来处理。 但是复杂一点的表单就需要多方面...

深入解读Python解析XML的几种方式

深入解读Python解析XML的几种方式

在XML解析方面,Python贯彻了自己“开箱即用”(batteries included)的原则。在自带的标准库中,Python提供了大量可以用于处理XML语言的包和工具,数量之多,甚...

Python中删除文件的程序代码

Python是一种面向对象的解释性的计算机程序设计语言,也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持...