Tensorflow的常用矩阵生成方式

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

#全0和全1矩阵

v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") 

v2 = tf.Variable(tf.ones([10,5]), name="v2") 
 
#填充单值矩阵 
v3 = tf.Variable(tf.fill([2,3], 9)) 

 
#常量矩阵 
v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) 
v4_2 = tf.constant(-1.0, shape=[2, 3]) 


# 和v4_1形状一样的全1或全0矩阵

v5_1=tf.ones_like(v4_1)

v5_2=tf.zeros_like(v4_1) 


#生成等差数列 
v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64 
v7_1 = tf.range(10, 20, 3)#just int32 
 
#生成各种随机数据矩阵 

#平均分布

v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1")) 
#正态分布

v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2")) 

#正态分布,但是去掉2sigma外的数字

v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3")) 

#把这3个行重排列
v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5") 

以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据

存取方式是:

np.save("v1.npy",sess.run(v1))#numpy save v1 as file 
test_a = np.load("v1.npy") 
print test_a[1,2] 

这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现将16进制字符串转化为ascii字符的方法分析

本文实例讲述了Python实现将16进制字符串转化为ascii字符的方法。分享给大家供大家参考,具体如下: 字符串456e633064316e675f31735f66336e,通过Pyt...

python代码打印100-999之间的回文数示例

python代码打印100-999之间的回文数示例

打印100-999之间的回文数(即百位和个位的数字相等),并每10个打印一行 i = 100 x = 0 # 使用计数器,每10个换行打印 while i <= 999:...

Python小白必备的8个最常用的内置函数(推荐)

Python给我们内置了大量功能函数,官方文档上列出了69个,有些是我们是平时开发中经常遇到的,也有一些函数很少被用到,这里列举被开发者使用最频繁的8个函数以及他们的详细用法 print...

Python使用统计函数绘制简单图形实例代码

Python使用统计函数绘制简单图形实例代码

前言 Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和 w...

详解python和matlab的优势与区别

Python是一种面向对象的解释型计算机程序设计语言。Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议...