Tensorflow的常用矩阵生成方式

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

#全0和全1矩阵

v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") 

v2 = tf.Variable(tf.ones([10,5]), name="v2") 
 
#填充单值矩阵 
v3 = tf.Variable(tf.fill([2,3], 9)) 

 
#常量矩阵 
v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) 
v4_2 = tf.constant(-1.0, shape=[2, 3]) 


# 和v4_1形状一样的全1或全0矩阵

v5_1=tf.ones_like(v4_1)

v5_2=tf.zeros_like(v4_1) 


#生成等差数列 
v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64 
v7_1 = tf.range(10, 20, 3)#just int32 
 
#生成各种随机数据矩阵 

#平均分布

v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1")) 
#正态分布

v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2")) 

#正态分布,但是去掉2sigma外的数字

v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3")) 

#把这3个行重排列
v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5") 

以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据

存取方式是:

np.save("v1.npy",sess.run(v1))#numpy save v1 as file 
test_a = np.load("v1.npy") 
print test_a[1,2] 

这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python常用模块logging——日志输出功能(示例代码)

用途 logging模块是Python的内置模块,主要用于输出运行日志,可以灵活配置输出日志的各项信息。 基本使用方法 logging.basicConfig(level=loggi...

python构造函数init实例方法解析

python构造函数init实例方法解析

这篇文章主要介绍了python构造函数init实例方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一、创建对象,我们需要定义构...

在pytorch 中计算精度、回归率、F1 score等指标的实例

pytorch中训练完网络后,需要对学习的结果进行测试。官网上例程用的方法统统都是正确率,使用的是torch.eq()这个函数。 但是为了更精细的评价结果,我们还需要计算其他各个指标。在...

Python实现微信机器人的方法

Python实现微信机器人的方法

最近在学python的过程中无意间发现一个python库:wxpy,其可以实现让微信自动接收、处理消息并进行回复的一系列功能。感觉挺有意思的,便自行摸索学习,并成功地实现了其功能。 当我...

Python编程对列表中字典元素进行排序的方法详解

本文实例讲述了Python编程对列表中字典元素进行排序的方法。分享给大家供大家参考,具体如下: 内容目录: 1. 问题起源 2. 对列表中的字典元素排序 3. 对json进行比较(忽略列...