关于tensorflow的几种参数初始化方法小结

yipeiwu_com5年前Python基础

在tensorflow中,经常会遇到参数初始化问题,比如在训练自己的词向量时,需要对原始的embeddigs矩阵进行初始化,更一般的,在全连接神经网络中,每层的权值w也需要进行初始化。

tensorlfow中应该有一下几种初始化方法

1. tf.constant_initializer() 常数初始化
2. tf.ones_initializer() 全1初始化
3. tf.zeros_initializer() 全0初始化
4. tf.random_uniform_initializer() 均匀分布初始化
5. tf.random_normal_initializer() 正态分布初始化
6. tf.truncated_normal_initializer() 截断正态分布初始化
7. tf.uniform_unit_scaling_initializer() 这种方法输入方差是常数
8. tf.variance_scaling_initializer() 自适应初始化
9. tf.orthogonal_initializer() 生成正交矩阵

具体的

1、tf.constant_initializer(),它的简写是tf.Constant()

#coding:utf-8
import numpy as np 
import tensorflow as tf 
train_inputs = [[1,2],[1,4],[3,2]]
with tf.variable_scope("embedding-layer"):
  val = np.array([[1,2,3,4,5,6,7],[1,3,4,5,2,1,9],[0,12,3,4,5,7,8],[2,3,5,5,6,8,9],[3,1,6,1,2,3,5]])
  const_init = tf.constant_initializer(val)
  embeddings = tf.get_variable("embed",shape=[5,7],dtype=tf.float32,initializer=const_init)
  embed = tf.nn.embedding_lookup(embeddings, train_inputs)             #在embedding中查找train_input所对应的表示
  print("embed",embed)
  sum_embed = tf.reduce_mean(embed,1)
initall = tf.global_variables_initializer()
with tf.Session() as sess:
  sess.run(initall)
  print(sess.run(embed))
  print(sess.run(tf.shape(embed)))
  print(sess.run(sum_embed))

4、random_uniform_initializer = RandomUniform()

可简写为tf.RandomUniform()

生成均匀分布的随机数,参数有四个(minval=0, maxval=None, seed=None, dtype=dtypes.float32),分别用于指定最小值,最大值,随机数种子和类型。

6、tf.truncated_normal_initializer()

可简写tf.TruncatedNormal()

生成截断正态分布的随机数,这个初始化方法在tf中用得比较多。

它有四个参数(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32),分别用于指定均值、标准差、随机数种子和随机数的数据类型,一般只需要设置stddev这一个参数就可以了。

8、tf.variance_scaling_initializer()

可简写为tf.VarianceScaling()

参数为(scale=1.0,mode="fan_in",distribution="normal",seed=None,dtype=dtypes.float32)

scale: 缩放尺度(正浮点数)

mode: "fan_in", "fan_out", "fan_avg"中的一个,用于计算标准差stddev的值。

distribution:分布类型,"normal"或“uniform"中的一个。

当 distribution="normal" 的时候,生成truncated normal distribution(截断正态分布) 的随机数,其中stddev = sqrt(scale / n) ,n的计算与mode参数有关。

如果mode = "fan_in", n为输入单元的结点数;

如果mode = "fan_out",n为输出单元的结点数;

如果mode = "fan_avg",n为输入和输出单元结点数的平均值。

当distribution="uniform”的时候 ,生成均匀分布的随机数,假设分布区间为[-limit, limit],则 limit = sqrt(3 * scale / n)

以上这篇关于tensorflow的几种参数初始化方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django解决跨域请求的问题

解决方案 1.安装django-cors-headers pip install django-cors-headers 2.配置settings.py文件 INSTA...

PyQt5显示GIF图片的方法

PyQt5显示GIF图片的方法

使用QMoive方法实现 导入库文件 from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import QMovi...

Python字符串特性及常用字符串方法的简单笔记

单引号和双引号都能表示字符串。区别在于转义的时候。 如果懒得加转义字符,可以通过在字符串前面加上r。例如: print r'C:\some\name' 通过在字符串里面添加反斜杠...

Python通过DOM和SAX方式解析XML的应用实例分享

XML.DOM 需求 有一个表,里面数据量比较大,每天一更新,其字段可以通过xml配置文件进行配置,即,可能每次建表的字段不一样。 上游跑时会根据配置从源文件中提取,到入库这一步需要根据...

pygame实现贪吃蛇游戏(下)

pygame实现贪吃蛇游戏(下)

接着上篇pygame实现贪吃蛇游戏(上)继续介绍 1.豆子的吃掉效果 只需在代码最后移动蛇头的代码后增加一个蛇头和豆子坐标的判断即可 if snake_x == bean_x and...