Tensorflow 自定义loss的情况下初始化部分变量方式

yipeiwu_com6年前Python基础

一般情况下,tensorflow里面变量初始化过程为:

  #variables ...........
  #..................... 
  init = tf.initialize_all_variables()
  sess.run(init)

这里 tf.initialize_all_variables() 会初始化所有的变量。

实际过程中,假设有a, b, c三个变量,其中a已经被初始化了,只想单独初始化b,c,那么:

  #variables ...
  ...
  init = tf.variables_initializer([b,c])
  sess.run(init)

此外,如果自行修改了optimizer,如下代码就会报错:

  #definition of variables a, b, c ...
  ....
  my_optimizer = tf.train.RMSProp(learning_rate = 0.1).minimize(my_cost)
  init = tf.variables_initializer([b,c])
  sess.run(init)

这是因为自己定义的optimizer会生成新的variables,但是在init里面并没有初始化,所以无法访问,会报错。解决方法如下:

  a = tf.Variables(...)      #line N
  temp = set(tf.all_variables()) 
  b = tf.Variables(...)
  c = tf.Variables(...) 
  #definition of my optimizer
  optimizer = tf.train.......
  init = tf.variables_initializer(set(tf.all_varialbles())-temp) # line M
  sess.run(init)

首先,temp = set(tf.all_variables()) 将该行(line N)代码之前的所有变量保存在temp中,接下来定义变量b, c,以及自定义的optimizer,然后 set(tf.all_varialbles()存储了改行(line M)之前的所有变量(包括optimizer生成的变量以及temp中所含的变量),set(tf.all_varialbles())-temp相减得到line N~M这几行定义的变量。

以上这篇Tensorflow 自定义loss的情况下初始化部分变量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基础教程之if判断,while循环,循环嵌套

if判断 判断的定义  如果条件满足,就做一件事;条件不满足,就做另一件事;  判断语句又被称为分支语句,有判断,才有分支; if判断语句基本语法 if语句格式:...

对Python中的条件判断、循环以及循环的终止方法详解

对Python中的条件判断、循环以及循环的终止方法详解

条件判断 条件语句是用来判断给定条件是否满足,并根据判断所得结果从而决定所要执行的操作,通常的逻辑思路如下图; 单次判断 形式 if <判断条件>: <执行&g...

Python实现的摇骰子猜大小功能小游戏示例

Python实现的摇骰子猜大小功能小游戏示例

本文实例讲述了Python实现的摇骰子猜大小功能小游戏。分享给大家供大家参考,具体如下: 最近学习Python的随机数,逻辑判断,循环的用法,就想找一些练习题,比如小游戏猜大小,程序思路...

python 寻找list中最大元素对应的索引方法

如下所示: aa = [1,2,3,4,5] aa.index(max(aa)) 如果aa是numpy数组: aa = numpy.array([1,2,3,4,5]) 先...

对python中的控制条件、循环和跳出详解

对python中的控制条件、循环和跳出详解 代码缩进(代码块): python用缩进表示代码块,没有其他语言的大括号 缩进是强制检查,整个代码缩进必须一致,否则无法运行 用2、4个空格或...