Tensorflow 自定义loss的情况下初始化部分变量方式

yipeiwu_com5年前Python基础

一般情况下,tensorflow里面变量初始化过程为:

  #variables ...........
  #..................... 
  init = tf.initialize_all_variables()
  sess.run(init)

这里 tf.initialize_all_variables() 会初始化所有的变量。

实际过程中,假设有a, b, c三个变量,其中a已经被初始化了,只想单独初始化b,c,那么:

  #variables ...
  ...
  init = tf.variables_initializer([b,c])
  sess.run(init)

此外,如果自行修改了optimizer,如下代码就会报错:

  #definition of variables a, b, c ...
  ....
  my_optimizer = tf.train.RMSProp(learning_rate = 0.1).minimize(my_cost)
  init = tf.variables_initializer([b,c])
  sess.run(init)

这是因为自己定义的optimizer会生成新的variables,但是在init里面并没有初始化,所以无法访问,会报错。解决方法如下:

  a = tf.Variables(...)      #line N
  temp = set(tf.all_variables()) 
  b = tf.Variables(...)
  c = tf.Variables(...) 
  #definition of my optimizer
  optimizer = tf.train.......
  init = tf.variables_initializer(set(tf.all_varialbles())-temp) # line M
  sess.run(init)

首先,temp = set(tf.all_variables()) 将该行(line N)代码之前的所有变量保存在temp中,接下来定义变量b, c,以及自定义的optimizer,然后 set(tf.all_varialbles()存储了改行(line M)之前的所有变量(包括optimizer生成的变量以及temp中所含的变量),set(tf.all_varialbles())-temp相减得到line N~M这几行定义的变量。

以上这篇Tensorflow 自定义loss的情况下初始化部分变量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3 列表,数组,矩阵的相互转换的方法示例

Python3 列表,数组,矩阵的相互转换的方法示例

在使用列表、数组和矩阵的过程中,经常需要相互转换。特此总结相互间转换的过程及结果,供大家参考。 第三方包:numpy     import nump...

详解Python requests 超时和重试的方法

网络请求不可避免会遇上请求超时的情况,在 requests 中,如果不设置你的程序可能会永远失去响应。 超时又可分为连接超时和读取超时。 连接超时 连接超时指的是在你的客户端实现到远端...

在Linux下使用Python的matplotlib绘制数据图的教程

在Linux下使用Python的matplotlib绘制数据图的教程

如果你想要在Linxu中获得一个高效、自动化、高质量的科学画图的解决方案,应该考虑尝试下matplotlib库。Matplotlib是基于python的开源科学测绘包,基于python软...

Python3 模块、包调用&路径详解

如下所示: ''' 以下代码均为讲解,不能实际操作 ''' ''' 博客园 Infi_chu ''' ''' 模块的优点: 1.高可维护性 2.可以大大减少编写的代码量 模块一共有...

python统计多维数组的行数和列数实例

python菜鸟,每天都要进步一点点。 二维元组的例子: A = ((1, 1, 1), (1, 1, 1),(1, 1, 1),(0, 0, 0)) print len(A) #...