Tensorflow 自定义loss的情况下初始化部分变量方式

yipeiwu_com5年前Python基础

一般情况下,tensorflow里面变量初始化过程为:

  #variables ...........
  #..................... 
  init = tf.initialize_all_variables()
  sess.run(init)

这里 tf.initialize_all_variables() 会初始化所有的变量。

实际过程中,假设有a, b, c三个变量,其中a已经被初始化了,只想单独初始化b,c,那么:

  #variables ...
  ...
  init = tf.variables_initializer([b,c])
  sess.run(init)

此外,如果自行修改了optimizer,如下代码就会报错:

  #definition of variables a, b, c ...
  ....
  my_optimizer = tf.train.RMSProp(learning_rate = 0.1).minimize(my_cost)
  init = tf.variables_initializer([b,c])
  sess.run(init)

这是因为自己定义的optimizer会生成新的variables,但是在init里面并没有初始化,所以无法访问,会报错。解决方法如下:

  a = tf.Variables(...)      #line N
  temp = set(tf.all_variables()) 
  b = tf.Variables(...)
  c = tf.Variables(...) 
  #definition of my optimizer
  optimizer = tf.train.......
  init = tf.variables_initializer(set(tf.all_varialbles())-temp) # line M
  sess.run(init)

首先,temp = set(tf.all_variables()) 将该行(line N)代码之前的所有变量保存在temp中,接下来定义变量b, c,以及自定义的optimizer,然后 set(tf.all_varialbles()存储了改行(line M)之前的所有变量(包括optimizer生成的变量以及temp中所含的变量),set(tf.all_varialbles())-temp相减得到line N~M这几行定义的变量。

以上这篇Tensorflow 自定义loss的情况下初始化部分变量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3.8对可迭代解包的改进及用法详解

Python 3 的可迭代解包 在 PEP 3132 - Extended Iterable Unpacking 里面描述了一种对可迭代对象的解包用法,Python 3 可用: In...

对pandas的层次索引与取值的新方法详解

对pandas的层次索引与取值的新方法详解

1、层次索引 1.1 定义 在某一个方向拥有多个(两个及两个以上)索引级别,就叫做层次索引。 通过层次化索引,pandas能够以较低维度形式处理高纬度的数据 通过层次化索引,可以按照层次...

Python 2.x如何设置命令执行的超时时间实例

前言 在Python2.x中的几个用来执行命令行的库或函数在执行命令是均不能设置一个命令执行的超时时间,用来在命令执行时间超时时终端这个命令的执行,这个功能在3.x(?)中解决了,但是在...

30分钟搭建Python的Flask框架并在上面编写第一个应用

30分钟搭建Python的Flask框架并在上面编写第一个应用

Flask 是一种很赞的Python web框架。它极小,简单,最棒的是它很容易学。 今天我来带你搭建你的第一个Flask web应用!和官方教程 一样,你将搭建你自己的微博客系统:Fl...

python支持断点续传的多线程下载示例

复制代码 代码如下:#! /usr/bin/env python#coding=utf-8 from __future__ import unicode_literals from mu...