tensorflow 只恢复部分模型参数的实例

yipeiwu_com5年前Python基础

我就废话不多说了,直接上代码吧!

import tensorflow as tf

def model_1():
  with tf.variable_scope("var_a"):
    a = tf.Variable(initial_value=[1, 2, 3], name="a")

  vars = [var for var in tf.trainable_variables() if var.name.startswith("var_a")]
  print(len(vars))
  return vars

def model_2():

  vars1 = model_1()

  with tf.variable_scope("var_b"):
    a = tf.Variable(initial_value=[1, 2, 3], name="a")

  vars2 = [var for var in tf.trainable_variables() if var.name.startswith("var")]
  print(len(vars2))
  return vars1


def pretrain_model1():
  print("-------- model 1 ------")
  vars = model_1()

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.save(sess, "./model.ckpt")

def train_model2():
  print("-------- model 2 ------")

  model1_vars = model_2()

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(var_list=model1_vars)
    saver.restore(sess, "./model.ckpt")
    vars = sess.run([model1_vars])
    for var in vars:
      print(var)

step = 2
if step == 1:
  pretrain_model1()
else:
  train_model2()

以上这篇tensorflow 只恢复部分模型参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现ID3决策树算法

ID3决策树是以信息增益作为决策标准的一种贪心决策树算法 # -*- coding: utf-8 -*- from numpy import * import math imp...

如何基于Python创建目录文件夹

这篇文章主要介绍了如何基于Python创建目录文件夹,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Python对文件的操作还算是方便...

Python开发之快速搭建自动回复微信公众号功能

Python开发之快速搭建自动回复微信公众号功能

在之前的一篇文章 Python利用 AIML 和 Tornado 搭建聊天机器人微信订阅号 中用 aiml 实现了一个简单的英文聊天机器人订阅号。但是只能处理英文消息,现在用 图灵机器人...

Django 开发环境与生产环境的区分详解

Django 开发环境与生产环境的设置 在常规的Django工程开发中,我们经常会遇到一类问题,即:本地开发环境跟远程服务器生产环境配置不一样。对于这些不同之处,以前的做法是直接修改生...

Python2.5/2.6实用教程 入门基础篇

起步走 复制代码 代码如下: #! /usr/bin/python a=2 b=3 c="test" c=a+b print "execution result: %i"%c 知识点...