pytorch 实现模型不同层设置不同的学习率方式

yipeiwu_com6年前Python基础

在目标检测的模型训练中, 我们通常都会有一个特征提取网络backbone, 例如YOLO使用的darknet SSD使用的VGG-16。

为了达到比较好的训练效果, 往往会加载预训练的backbone模型参数, 然后在此基础上训练检测网络, 并对backbone进行微调, 这时候就需要为backbone设置一个较小的lr。

class net(torch.nn.Module):
  def __init__(self):
    super(net, self).__init__()
    # backbone
    self.backbone = ...
    # detect
    self....

在设置optimizer时, 只需要参数分为两个部分, 并分别给定不同的学习率lr。

base_params = list(map(id, net.backbone.parameters()))
logits_params = filter(lambda p: id(p) not in base_params, net.parameters())
params = [
  {"params": logits_params, "lr": config.lr},
  {"params": net.backbone.parameters(), "lr": config.backbone_lr},
]
optimizer = torch.optim.SGD(params, momentum=config.momentum, weight_decay=config.weight_decay)
 

以上这篇pytorch 实现模型不同层设置不同的学习率方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于Python __dict__与dir()的区别详解

Python下一切皆对象,每个对象都有多个属性(attribute),Python对属性有一套统一的管理方案。 __dict__与dir()的区别: dir()是一个函数,返回的是lis...

python中 ? : 三元表达式的使用介绍

(1) variable = a if exper else b(2)variable = (exper and [b] or [c])[0](2) variable = exper a...

使用python实现ANN

使用python实现ANN

本文实例为大家分享了python实现ANN的具体代码,供大家参考,具体内容如下 1.简要介绍神经网络 神经网络是具有适应性的简单单元组成的广泛并行互联的网络。它的组织能够模拟生物神经系统...

Python修改文件往指定行插入内容的实例

需求:批量修改py文件中的类属性,为类增加一个core = True新的属性 原py文件如下 a.py class A(): description = "abc" 现在有一个...

Golang与python线程详解及简单实例

Golang与python线程详解及简单实例 在GO中,开启15个线程,每个线程把全局变量遍历增加100000次,因此预测结果是 15*100000=1500000. var sum...