pytorch 实现模型不同层设置不同的学习率方式

yipeiwu_com5年前Python基础

在目标检测的模型训练中, 我们通常都会有一个特征提取网络backbone, 例如YOLO使用的darknet SSD使用的VGG-16。

为了达到比较好的训练效果, 往往会加载预训练的backbone模型参数, 然后在此基础上训练检测网络, 并对backbone进行微调, 这时候就需要为backbone设置一个较小的lr。

class net(torch.nn.Module):
  def __init__(self):
    super(net, self).__init__()
    # backbone
    self.backbone = ...
    # detect
    self....

在设置optimizer时, 只需要参数分为两个部分, 并分别给定不同的学习率lr。

base_params = list(map(id, net.backbone.parameters()))
logits_params = filter(lambda p: id(p) not in base_params, net.parameters())
params = [
  {"params": logits_params, "lr": config.lr},
  {"params": net.backbone.parameters(), "lr": config.backbone_lr},
]
optimizer = torch.optim.SGD(params, momentum=config.momentum, weight_decay=config.weight_decay)
 

以上这篇pytorch 实现模型不同层设置不同的学习率方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

分享一下Python 开发者节省时间的10个方法

分享一下Python 开发者节省时间的10个方法

Python 是一个美丽的语言,可以激发用户对它的爱。所以如果你试图加入程序员行列,或者你有点厌倦C++,Perl,Java 和其他语言,我推荐你尝试Python. Python有很多吸...

Python中的上下文管理器和with语句的使用

Python2.5之后引入了上下文管理器(context manager),算是Python的黑魔法之一,它用于规定某个对象的使用范围。本文是针对于该功能的思考总结。 为什么需要上下文管...

win10安装tesserocr配置 Python使用tesserocr识别字母数字验证码

win10安装tesserocr配置 Python使用tesserocr识别字母数字验证码

链接:https://pan.baidu.com/s/1l2yiba7ZTPUTf41ZnJ4PYw 提取码:t3bq win10安装tesserocr 首先需要下载tesseract,...

django解决跨域请求的问题详解

解决方案 1.安装django-cors-headers pip install django-cors-headers 2.配置settings.py文件 INSTAL...

python中__call__方法示例分析

本文实例讲述了python中__call__方法的用法,分享给大家供大家参考。具体方法分析如下: Python中的__call__允许程序员创建可调用的对象(实例),默认情况下, __c...