pytorch 实现模型不同层设置不同的学习率方式

yipeiwu_com6年前Python基础

在目标检测的模型训练中, 我们通常都会有一个特征提取网络backbone, 例如YOLO使用的darknet SSD使用的VGG-16。

为了达到比较好的训练效果, 往往会加载预训练的backbone模型参数, 然后在此基础上训练检测网络, 并对backbone进行微调, 这时候就需要为backbone设置一个较小的lr。

class net(torch.nn.Module):
  def __init__(self):
    super(net, self).__init__()
    # backbone
    self.backbone = ...
    # detect
    self....

在设置optimizer时, 只需要参数分为两个部分, 并分别给定不同的学习率lr。

base_params = list(map(id, net.backbone.parameters()))
logits_params = filter(lambda p: id(p) not in base_params, net.parameters())
params = [
  {"params": logits_params, "lr": config.lr},
  {"params": net.backbone.parameters(), "lr": config.backbone_lr},
]
optimizer = torch.optim.SGD(params, momentum=config.momentum, weight_decay=config.weight_decay)
 

以上这篇pytorch 实现模型不同层设置不同的学习率方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pycharm中Python环境配置常见问题解析

Pycharm中Python环境配置常见问题解析

本文实例讲述了Pycharm中Python环境配置常见问题。分享给大家供大家参考,具体如下: 1、问题的发现 最近在用Pycharm下的命令行工具安装、运行jupyter noteboo...

django 实现编写控制登录和访问权限控制的中间件方法

django中,很多时候我们都需要有一个地方来进行更加详细的权限控制,例如说哪些用户可以访问哪些页面,检查登录状态等,这里的话就涉及到了中间件的编写了。 在django项目下的setti...

Python中生成一个指定长度的随机字符串实现示例

方法一: 定义一个函数,参数为所要生成随机字符串的长度。通过random.randint(a, b)方法得到随机数字,具体函数如下: def generate_random_str(...

Python实现程序的单一实例用法分析

本文实例讲述了Python实现程序的单一实例用法。分享给大家供大家参考。具体如下: 这里先使用win32ui.FindWindow查找窗口名字,如果不存在则会抛出一个异常 impor...

Python使用OpenCV进行标定

Python使用OpenCV进行标定

本文结合OpenCV官方样例,对官方样例中的代码进行修改,使其能够正常运行,并对自己采集的数据进行实验和讲解。 一、准备 OpenCV使用棋盘格板进行标定,如下图所示。为了标定相机,我们...