PyTorch中 tensor.detach() 和 tensor.data 的区别详解

yipeiwu_com5年前Python基础

PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。

.detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候.

举例:

tensor.data

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.data
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的数值被c.zero_()修改
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 反向传播
>>> a.grad    # 这个结果很严重的错误,因为out已经改变了
tensor([ 0., 0., 0.])

tensor.detach()

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.detach()
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的值被c.zero_()修改 !!
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 需要原来out得值,但是已经被c.zero_()覆盖了,结果报错
RuntimeError: one of the variables needed for gradient
computation has been modified by an

以上这篇PyTorch中 tensor.detach() 和 tensor.data 的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python字符串匹配之6种方法的使用详解

1. re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none。 import re line="this hdr-biz 1...

python自定义函数实现最大值的输出方法

python中内置的max()函数用来得到最大值,通过冒泡排序也可以。 #!/usr/bin/python def getMax(arr): for i in range(0...

Python将多个list合并为1个list的方法

Python将多个list合并为1个list的方法

1、可以使用"+"号完成操作 输出为: [1, 2, 3, 8, 'google', 'com'] 2、使用extend方法 输入相同 3、使用切片 输出相同 PS:len(l1)...

Python编写登陆接口的方法

Python编写登陆接口的方法

本文实例为大家分享了Python编写登陆接口的具体代码,供大家参考,具体内容如下 1.输入用户名密码; 2.认证成功后显示欢迎信息; 3.错误三次后,账号被锁定。  账号文件:...

把大数据数字口语化(python与js)两种实现

python 复制代码 代码如下:def fn(num):    '''    把数字口语化   ...