PyTorch中 tensor.detach() 和 tensor.data 的区别详解

yipeiwu_com6年前Python基础

PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。

.detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候.

举例:

tensor.data

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.data
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的数值被c.zero_()修改
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 反向传播
>>> a.grad    # 这个结果很严重的错误,因为out已经改变了
tensor([ 0., 0., 0.])

tensor.detach()

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.detach()
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的值被c.zero_()修改 !!
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 需要原来out得值,但是已经被c.zero_()覆盖了,结果报错
RuntimeError: one of the variables needed for gradient
computation has been modified by an

以上这篇PyTorch中 tensor.detach() 和 tensor.data 的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的ConfigParser模块使用详解

1.基本的读取配置文件     -read(filename) 直接读取ini文件内容     -sections() 得到所...

python使用装饰器和线程限制函数执行时间的方法

本文实例讲述了python使用装饰器和线程限制函数执行时间的方法。分享给大家供大家参考。具体分析如下: 很多时候函数内部包含了一些不可预知的事情,比如调用其它软件,从网络抓取信息,可能某...

Python语言实现将图片转化为html页面

Python语言实现将图片转化为html页面

PIL 图像处理库 PIL(Python Imaging Library) 是 Python 平台的图像处理标准库。不过 PIL 暂不支持 Python3,可以用 Pillow 代替,...

在Python中增加和插入元素的示例

在Python中append 用来向 list 的末尾追加单个元素,如果增加的元素是一个list,那么这个list将作为一个整体进行追加。 例如: Python代码 li=['a',...

Python3利用SMTP协议发送E-mail电子邮件的方法

Python3利用SMTP协议发送E-mail电子邮件的方法

前言 本文主要给大家介绍了关于Python3用SMTP协议发送电子邮件的相关内容,在介绍如何使用python程序向指定邮箱发送邮件之前,我们需要先介绍一下有关电子邮件的相关知识。 Ema...