PyTorch中 tensor.detach() 和 tensor.data 的区别详解

yipeiwu_com5年前Python基础

PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。

.detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候.

举例:

tensor.data

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.data
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的数值被c.zero_()修改
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 反向传播
>>> a.grad    # 这个结果很严重的错误,因为out已经改变了
tensor([ 0., 0., 0.])

tensor.detach()

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.detach()
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的值被c.zero_()修改 !!
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 需要原来out得值,但是已经被c.zero_()覆盖了,结果报错
RuntimeError: one of the variables needed for gradient
computation has been modified by an

以上这篇PyTorch中 tensor.detach() 和 tensor.data 的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Windows下PyCharm2018.3.2 安装教程(图文详解)

Windows下PyCharm2018.3.2 安装教程(图文详解)

安装包 PyCharm 笔者使用PyCharm2018.3.2,请根据机器是64位还是32位来选择对应的PyCharm版本。(相信绝大部分人都可以很从容的来查看自己机器的位数,在这里就不...

python检测远程udp端口是否打开的方法

本文实例讲述了python检测远程udp端口是否打开的方法。分享给大家供大家参考。具体实现方法如下: 复制代码 代码如下:import socket import threading i...

Python日期操作学习笔记

比如用 print ','.join(datelist) 就可以将datelist列表里面的所有项目并成一个字符串,当然这个表达式会在每一个项目中间插入一个逗号,这种方式比用循环的方式更...

Python中sorted()排序与字母大小写的问题

今天我在练习python时,对字典里的键用sorted排序时发现并没有按照预期排序 研究后发现字母大小写会影响排序 首先创建一个字典,键里面的首字母有大写有小写 favorite_...

解决Python requests库编码 socks5代理的问题

解决Python requests库编码 socks5代理的问题

编码问题 response = requests.get(URL, params=params, headers=headers, timeout=10) print '...