PyTorch学习:动态图和静态图的例子

yipeiwu_com5年前Python基础

动态图和静态图

目前神经网络框架分为静态图框架和动态图框架,PyTorch 和 TensorFlow、Caffe 等框架最大的区别就是他们拥有不同的计算图表现形式。 TensorFlow 使用静态图,这意味着我们先定义计算图,然后不断使用它,而在 PyTorch 中,每次都会重新构建一个新的计算图。通过这次课程,我们会了解静态图和动态图之间的优缺点。

对于使用者来说,两种形式的计算图有着非常大的区别,同时静态图和动态图都有他们各自的优点,比如动态图比较方便debug,使用者能够用任何他们喜欢的方式进行debug,同时非常直观,而静态图是通过先定义后运行的方式,之后再次运行的时候就不再需要重新构建计算图,所以速度会比动态图更快。

# tensorflow
import tensorflow as tf
first_counter = tf.constant(0)
second_counter = tf.constant(10)
# tensorflow
import tensorflow as tf
first_counter = tf.constant(0)
second_counter = tf.constant(10)
def cond(first_counter, second_counter, *args):
  return first_counter < second_counter
def body(first_counter, second_counter):
  first_counter = tf.add(first_counter, 2)
  second_counter = tf.add(second_counter, 1)
  return first_counter, second_counter
c1, c2 = tf.while_loop(cond, body, [first_counter, second_counter])
with tf.Session() as sess:
  counter_1_res, counter_2_res = sess.run([c1, c2])
print(counter_1_res)
print(counter_2_res)

可以看到 TensorFlow 需要将整个图构建成静态的,换句话说,每次运行的时候图都是一样的,是不能够改变的,所以不能直接使用 Python 的 while 循环语句,需要使用辅助函数 tf.while_loop 写成 TensorFlow 内部的形式

# pytorch
import torch
first_counter = torch.Tensor([0])
second_counter = torch.Tensor([10])
 
while (first_counter < second_counter)[0]:
  first_counter += 2
  second_counter += 1
 
print(first_counter)
print(second_counter)

可以看到 PyTorch 的写法跟 Python 的写法是完全一致的,没有任何额外的学习成本

以上这篇PyTorch学习:动态图和静态图的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用Python和WordCloud绘制词云的实现方法(内附让字体清晰的秘笈)

用Python和WordCloud绘制词云的实现方法(内附让字体清晰的秘笈)

环境及模块: Win7 64位 Python 3.6.4 WordCloud 1.5.0 Pillow 5.0.0 Jieba 0.39 目标: 绘制安徽省201...

Python中使用SAX解析xml实例

SAX是一种基于事件驱动的API。利用SAX解析XML文档牵涉到两个部分:解析器和事件处理器。解析器负责读取XML文档,并向事件处理器发送事件,如元素开始跟元素结束事件;而事件处理器则负...

测试、预发布后用python检测网页是否有日常链接

在大的互联网公司干技术的基本都会碰到测试、预发布、线上这种多套环境的,来实现测试和线上正式环境的隔离,这种情况下,就难免会碰到秀逗了把测试的链接发布到线上的情况,一般这种都是通过一些测试...

Python模仿POST提交HTTP数据及使用Cookie值的方法

本文实例讲述了在Python中模仿POST HTTP数据及带Cookie提交数据的实现方法,分享给大家供大家参考。具体实现方法如下: 方法一 如果不使用Cookie, 发送HTTP PO...

使用Windows批处理和WMI设置Python的环境变量方法

大概在Python2.7.xx以前,安装Python时环境变量是需要自己设的,所以自己做了一个批处理文件.bat来设置环境变量Path,通过WMI命令wmic来实现。 ::检查pat...