PyTorch学习:动态图和静态图的例子

yipeiwu_com6年前Python基础

动态图和静态图

目前神经网络框架分为静态图框架和动态图框架,PyTorch 和 TensorFlow、Caffe 等框架最大的区别就是他们拥有不同的计算图表现形式。 TensorFlow 使用静态图,这意味着我们先定义计算图,然后不断使用它,而在 PyTorch 中,每次都会重新构建一个新的计算图。通过这次课程,我们会了解静态图和动态图之间的优缺点。

对于使用者来说,两种形式的计算图有着非常大的区别,同时静态图和动态图都有他们各自的优点,比如动态图比较方便debug,使用者能够用任何他们喜欢的方式进行debug,同时非常直观,而静态图是通过先定义后运行的方式,之后再次运行的时候就不再需要重新构建计算图,所以速度会比动态图更快。

# tensorflow
import tensorflow as tf
first_counter = tf.constant(0)
second_counter = tf.constant(10)
# tensorflow
import tensorflow as tf
first_counter = tf.constant(0)
second_counter = tf.constant(10)
def cond(first_counter, second_counter, *args):
  return first_counter < second_counter
def body(first_counter, second_counter):
  first_counter = tf.add(first_counter, 2)
  second_counter = tf.add(second_counter, 1)
  return first_counter, second_counter
c1, c2 = tf.while_loop(cond, body, [first_counter, second_counter])
with tf.Session() as sess:
  counter_1_res, counter_2_res = sess.run([c1, c2])
print(counter_1_res)
print(counter_2_res)

可以看到 TensorFlow 需要将整个图构建成静态的,换句话说,每次运行的时候图都是一样的,是不能够改变的,所以不能直接使用 Python 的 while 循环语句,需要使用辅助函数 tf.while_loop 写成 TensorFlow 内部的形式

# pytorch
import torch
first_counter = torch.Tensor([0])
second_counter = torch.Tensor([10])
 
while (first_counter < second_counter)[0]:
  first_counter += 2
  second_counter += 1
 
print(first_counter)
print(second_counter)

可以看到 PyTorch 的写法跟 Python 的写法是完全一致的,没有任何额外的学习成本

以上这篇PyTorch学习:动态图和静态图的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Dlib+OpenCV深度学习人脸识别的方法示例

Dlib+OpenCV深度学习人脸识别的方法示例

前言 人脸识别在LWF(Labeled Faces in the Wild)数据集上人脸识别率现在已经99.7%以上,这个识别率确实非常高了,但是真实的环境中的准确率有多少呢?我没有这方...

Python使用wget实现下载网络文件功能示例

本文实例讲述了Python使用wget实现下载网络文件功能。分享给大家供大家参考,具体如下: wget是一个从网络上自动下载文件的自由工具。它支持HTTP,HTTPS和FTP协议,可以使...

利用Python画ROC曲线和AUC值计算

利用Python画ROC曲线和AUC值计算

前言 ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣。这篇文章将先简单的介...

python中实现定制类的特殊方法总结

看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的。 __slots__我们已经知道怎么用了,__len__()方法我们也知道是...

python计算n的阶乘的方法代码

整数的阶乘(英语:factorial)是所有小于及等于该数的正整数的积,0的阶乘为1。即:n!=1×2×3×...×n。 首先导入math模块,然后调用factorial()函数来计算阶...