pytorch自定义二值化网络层方式

yipeiwu_com6年前Python基础

任务要求:

自定义一个层主要是定义该层的实现函数,只需要重载Function的forward和backward函数即可,如下:

import torch
from torch.autograd import Function
from torch.autograd import Variable

定义二值化函数

class BinarizedF(Function):
  def forward(self, input):
    self.save_for_backward(input)
    a = torch.ones_like(input)
    b = -torch.ones_like(input)
    output = torch.where(input>=0,a,b)
    return output
  def backward(self, output_grad):
    input, = self.saved_tensors
    input_abs = torch.abs(input)
    ones = torch.ones_like(input)
    zeros = torch.zeros_like(input)
    input_grad = torch.where(input_abs<=1,ones, zeros)
    return input_grad

定义一个module

class BinarizedModule(nn.Module):
  def __init__(self):
    super(BinarizedModule, self).__init__()
    self.BF = BinarizedF()
  def forward(self,input):
    print(input.shape)
    output =self.BF(input)
    return output

进行测试

a = Variable(torch.randn(4,480,640), requires_grad=True)
output = BinarizedModule()(a)
output.backward(torch.ones(a.size()))
print(a)
print(a.grad)

其中, 二值化函数部分也可以按照方式写,但是速度慢了0.05s

class BinarizedF(Function):
  def forward(self, input):
    self.save_for_backward(input)
    output = torch.ones_like(input)
    output[input<0] = -1
    return output
  def backward(self, output_grad):
    input, = self.saved_tensors
    input_grad = output_grad.clone()
    input_abs = torch.abs(input)
    input_grad[input_abs>1] = 0
    return input_grad

以上这篇pytorch自定义二值化网络层方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PyCharm设置每行最大长度限制的方法

PyCharm设置每行最大长度限制的方法

编写Python代码,大家都需要遵循PEP8,因此在pycharm中,如何设置每行最大长度限制,成为了一个小的知识盲点,在这里做一下记录,方便以后查看。 File→Settings→Co...

python中文乱码的解决方法

乱码原因: 源码文件的编码格式为utf-8,但是window的本地默认编码是gbk,所以在控制台直接打印utf-8的字符串当然是乱码了! 解决方法: 1、print mystr.deco...

python在linux系统下获取系统内存使用情况的方法

本文实例讲述了python在linux系统下获取系统内存使用情况的方法。分享给大家供大家参考。具体如下: """ Simple module for getting amount o...

在python中以相同顺序shuffle两个list的方法

通常做机器学习问题时,需要准备训练数据,通常会把样本数据和标签存放于2个list中,比如train_x = [x1,x2,...,xN][x1,x2,...,xN],train_y =...

Python中的sort()方法使用基础教程

一、基本形式 sorted(iterable[, cmp[, key[, reverse]]]) iterable.sort(cmp[, key[, reverse]]) &nbs...