pytorch 中pad函数toch.nn.functional.pad()的用法

yipeiwu_com6年前Python基础

padding操作是给图像外围加像素点。

为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理。

这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框。具体代码如下:

import torch.nn,functional as F
import torch
from PIL import Image
im=Image.open("heibai.jpg",'r')

X=torch.Tensor(np.asarray(im))
print("shape:",X.shape)
dim=(10,10,10,10)
X=F.pad(X,dim,"constant",value=0)

padX=X.data.numpy()
padim=Image.fromarray(padX)
padim=padim.convert("RGB")#这里必须转为RGB不然会

padim.save("padded.jpg","jpeg")
padim.show()
print("shape:",padX.shape)

输出:

shape: torch.Size([256, 256])
shape: (276, 276)

可以看出给原图四个方向给加上10维度的0,维度变为256+10+10得到的图像如下:

我们在举几个简单例子:

x=np.asarray([[[1,2],[1,2]]])
X=torch.Tensor(x)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,

        )
X=F.pad(X,pad_dims,"constant")
print(X.shape)
print(X)

输出:

torch.Size([1, 2, 2])
torch.Size([3, 6, 6])
tensor([[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

    [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

    [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]])

可以知若pid_sim为(2,2,2,2,1,1)则原维度变化是2+2+2=6,1+1+1=3.也就是第一个(2,2) pad的是最后一个维度,第二个(2,2)pad是倒数第二个维度,第三个(1,1)pad是第一个维度。

再举一个四维度的,但是只pad三个维度:

x=np.asarray([[[[1,2],[1,2]]]])
X=torch.Tensor(x)#(1,2,2)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,

        )
X=F.pad(X,pad_dims,"constant")#(1,1,12,12)
print(X.shape)
print(X)

输出:

torch.Size([1, 1, 2, 2])
torch.Size([1, 3, 6, 6])
tensor([[[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]]])

再举一个四维度的,pad四个维度:

x=np.asarray([[[[1,2],[1,2]]]])
X=torch.Tensor(x)#(1,2,2)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,
          2, 2

        )
X=F.pad(X,pad_dims,"constant")#(1,1,12,12)
print(X.shape)
print(X)

输出:

torch.Size([1, 1, 2, 2])
torch.Size([5, 3, 6, 6])
tensor([[[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],

     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]],


.........太多了

以上这篇pytorch 中pad函数toch.nn.functional.pad()的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的fileinput模块的简单实用示例

这几天有这样一个需求,要将用户登陆系统的信息统计出来,做成一个报表。当用户登陆成功的时候,服务器会往日志文件里写一条像下面这种格式的记录:”日期时间@用户名@IP“,这样的日志文件第天生...

django框架单表操作之增删改实例分析

django框架单表操作之增删改实例分析

本文实例讲述了django框架单表操作之增删改。分享给大家供大家参考,具体如下: 首先找到操作的首页面 代码如下 <!DOCTYPE html> <html lan...

python+opencv+caffe+摄像头做目标检测的实例代码

python+opencv+caffe+摄像头做目标检测的实例代码

首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持...

Python深入06——python的内存管理详解

Python深入06——python的内存管理详解

语言的内存管理是语言设计的一个重要方面。它是决定语言性能的重要因素。无论是C语言的手工管理,还是Java的垃圾回收,都成为语言最重要的特征。这里以Python语言为例子,说明一门动态类型...

python数据结构之二叉树的统计与转换实例

python数据结构之二叉树的统计与转换实例

一、获取二叉树的深度就是二叉树最后的层次,如下图: 实现代码:复制代码 代码如下:def getheight(self):     &n...