python Tensor和Array对比分析

yipeiwu_com6年前Python基础

如下所示:

区别 Array Tensor
类型 uint8,float32系列 {}
各类型相互转换 uint8转float64:image = image * (2. / 255.) - 1 float64转uint8:image.astype(np.uint8) {}
扩充维度 image[np.newaxis, :] tf.expand_dims(image,axis=0)
数组拼接 np.concatenate([image, image], axis=0) tf.concat([frame,frame],axis=0)
相互转换 image.eval() tf.convert_to_tensor(image)
拼接 np.concat, np.concatenate, np.stack, image.append等 tf.stack, tf.concat

##array的一些操作

1、获取shape:score.shape #(1, 257, 257)

2、转换成list:score.get_shape().as_list() #[1, 257, 257]

3、list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]

4、x_crops是(1, 3, 255, 255, 3),将前两维合并:

x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])

5、numpy数组堆叠

z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)

np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠

hstack 按列堆叠

以上这篇python Tensor和Array对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django 自定义过滤器的实现

自定义模版过滤器 虽然DTL给我们内置了许多好用的过滤器。但是有些时候还是不能满足我们的需求。因此Django给我们提供了一个接口,可以让我们自定义过滤器,实现自己的需求。 模版过滤...

详解Python list和numpy array的存储和读取方法

详解Python list和numpy array的存储和读取方法

numpy array存储为.npy 存储: import numpy as np numpy_array = np.array([1,2,3]) np.save('log.npy'...

django反向解析URL和URL命名空间的方法

本文介绍了django反向解析URL和URL命名空间,分享给大家,具体如下: 首先明确几个概念: 1.在html页面上的内容特别是向用户展示的url地址,比如常见的超链接,图片链接等,...

python3+django2开发一个简单的人员管理系统过程详解

python3+django2开发一个简单的人员管理系统过程详解

一、基础环境准备 windows环境: Pycharm python3.6 Django2.0.1 Mysql5.7 安装django 在pycharm termin...

对Python 中矩阵或者数组相减的法则详解

对Python 中矩阵或者数组相减的法则详解

最近在做编程练习,发现有些结果的值与答案相差较大,通过分析比较得出结论,大概过程如下: 定义了一个计算损失的函数: def error(yhat,label): yhat = np...