pytorch下大型数据集(大型图片)的导入方式

yipeiwu_com5年前Python基础

使用torch.utils.data.Dataset类 处理图片数据时,

1. 我们需要定义三个基本的函数,以下是基本流程

class our_datasets(Data.Dataset):
 
  def __init__(self,root,is_resize=False,is_transfrom=False):
    #这里只是个参考。按自己需求写。
    self.root=root
    self.is_resize=is_resize
    self.is_transfrom=is_transfrom
 
    self.imgs_list=...#这里建议保存的是 图片的路径 而不是 图片的数据
    self.labs_list=...
 
  def __getitem__(self, index):
 
    img_path,lab=self.imgs_list[index],self.labs_list[index]
    
    #这里使用PIL库读取图片数据.
    img_data = Image.open(img_path).convert('RGB')
 
    #这里看自己需要,可以不要
    if self.is_resize:
      img_data = img_data.resize((self.is_resize[0], self.is_resize[1]), Image.ANTIALIAS)
    
    #但是数据转换建议加上,很多时候都会用到
    if self.is_transfrom:
      img_data=self.is_transfrom(img_data)
    return img_data,lab
 
  def __len__(self):
 
    return len(self.imgs_list)

这里,我将 读取图片 的步骤 放到 __getitem__ ,是因为 这样放的话,对内存的要求会降低很多,我们只是将数据的路径导入了内存中,当需要读取这个图片数据时,再读取,这样更像是随用随取。如果将这部分放到 __init__ 里面,会一次将 图片数据都加载到 内存中,如果数据量太大,会直接卡死。

2.Dataset 类 返回的数据 类型 是与你读取时的类型一致的。但是在 pytorch使用时,会提示

TypeError: batch must contain tensors, numbers, dicts or lists; found <class 'PIL.Image.Image'>

通常,在数据了不大时,我一般都是在 读取数据后 加一句,转换成 numpy.array类型。

但是,在处理较大型的数据时,这样会很慢。

这时候,我建议 直接使用 torchvision来进行数据转换。

is_transfrom=torchvision.transforms.ToTensor()

将 上例代码 加入 Dataset类中,这样就会快很多。

以上这篇pytorch下大型数据集(大型图片)的导入方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pyqt5 使用label控件实时显示时间的实例

pyqt5 使用label控件实时显示时间的实例

如下所示: import sys from PyQt5 import QtGui, QtCore, QtWidgets from PyQt5.QtWidgets import * f...

python Django框架实现web端分页呈现数据

这里介绍使用python-Django框架来实现web端分页呈现数据,主要说明对应的views,urls,templates三个文件的编程逻辑的实现。 首先介绍Django中的pagin...

讲解Python中fileno()方法的使用

 fileno()方法返回所使用的底层实现,要求从操作系统I/O操作的整数文件描述符。 语法 以下是fileno()方法的语法: fileObject.fileno();...

Python Learning 列表的更多操作及示例代码

遍历列表-for循环 列表中存储的元素可能非常多,如果想一个一个的访问列表中的元素,可能是一件十分头疼的事。那有没有什么好的办法呢?当然有!使用 for循环 假如有一个食物名单列表,通过...

Python之pandas读写文件乱码的解决方法

python读写文件有时候会出现   ‘XXX'编码不能打开XXX什么的,用记事本打开要读取的文件,另存为UTF-8编码,然后再用py去读应该可以了。如果还不行,那...