pytorch下大型数据集(大型图片)的导入方式

yipeiwu_com6年前Python基础

使用torch.utils.data.Dataset类 处理图片数据时,

1. 我们需要定义三个基本的函数,以下是基本流程

class our_datasets(Data.Dataset):
 
  def __init__(self,root,is_resize=False,is_transfrom=False):
    #这里只是个参考。按自己需求写。
    self.root=root
    self.is_resize=is_resize
    self.is_transfrom=is_transfrom
 
    self.imgs_list=...#这里建议保存的是 图片的路径 而不是 图片的数据
    self.labs_list=...
 
  def __getitem__(self, index):
 
    img_path,lab=self.imgs_list[index],self.labs_list[index]
    
    #这里使用PIL库读取图片数据.
    img_data = Image.open(img_path).convert('RGB')
 
    #这里看自己需要,可以不要
    if self.is_resize:
      img_data = img_data.resize((self.is_resize[0], self.is_resize[1]), Image.ANTIALIAS)
    
    #但是数据转换建议加上,很多时候都会用到
    if self.is_transfrom:
      img_data=self.is_transfrom(img_data)
    return img_data,lab
 
  def __len__(self):
 
    return len(self.imgs_list)

这里,我将 读取图片 的步骤 放到 __getitem__ ,是因为 这样放的话,对内存的要求会降低很多,我们只是将数据的路径导入了内存中,当需要读取这个图片数据时,再读取,这样更像是随用随取。如果将这部分放到 __init__ 里面,会一次将 图片数据都加载到 内存中,如果数据量太大,会直接卡死。

2.Dataset 类 返回的数据 类型 是与你读取时的类型一致的。但是在 pytorch使用时,会提示

TypeError: batch must contain tensors, numbers, dicts or lists; found <class 'PIL.Image.Image'>

通常,在数据了不大时,我一般都是在 读取数据后 加一句,转换成 numpy.array类型。

但是,在处理较大型的数据时,这样会很慢。

这时候,我建议 直接使用 torchvision来进行数据转换。

is_transfrom=torchvision.transforms.ToTensor()

将 上例代码 加入 Dataset类中,这样就会快很多。

以上这篇pytorch下大型数据集(大型图片)的导入方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何在Python函数执行前后增加额外的行为

首先来看一个小程序,这个是计量所花费时间的程序,以下是以往的解决示例 from functools import wraps, partial from time import ti...

python 循环数据赋值实例

python在数值赋值的时候可以采用数值内循环赋值,很方便 如下 a = [x for x in range(10)] 这样 a = [0,1,2,3,4,5,6,7,8,9]...

Python发送以整个文件夹的内容为附件的邮件的教程

由于我经常需要备份文件夹下的内容到邮件里面,每个打开邮件,上传文件,发送,太过麻烦,其实每次发送的文件都是放在固定 置的,只是邮件标题不同而已,于是用 python 为自己写了个发送文件...

Python+OpenCV人脸检测原理及示例详解

Python+OpenCV人脸检测原理及示例详解

关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) 。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很...

对Python 3.5拼接列表的新语法详解

在Python 3.5之前的版本,拼接列表可以有这两种方法: 1、列表相加 list1 = [1,2,3] list2 = [4,5,6] result = list1 + list...