MNIST数据集转化为二维图片的实现示例

yipeiwu_com6年前Python基础

本文介绍了MNIST数据集转化为二维图片的实现示例,分享给大家,具体如下:

#coding: utf-8
from tensorflow.examples.tutorials.mnist import input_data
import scipy.misc
import os

# 读取MNIST数据集。如果不存在会事先下载。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 我们把原始图片保存在MNIST_data/raw/文件夹下
# 如果没有这个文件夹会自动创建
save_dir = 'MNIST_data/raw/'
if os.path.exists(save_dir) is False:
  os.makedirs(save_dir)

# 保存前20张图片
for i in range(20):
  # 请注意,mnist.train.images[i, :]就表示第i张图片(序号从0开始)
  image_array = mnist.train.images[i, :]
  # TensorFlow中的MNIST图片是一个784维的向量,我们重新把它还原为28x28维的图像。
  image_array = image_array.reshape(28, 28)
  # 保存文件的格式为 mnist_train_0.jpg, mnist_train_1.jpg, ... ,mnist_train_19.jpg
  filename = save_dir + 'mnist_train_%d.jpg' % i
  # 将image_array保存为图片
  # 先用scipy.misc.toimage转换为图像,再调用save直接保存。
  scipy.misc.toimage(image_array, cmin=0.0, cmax=1.0).save(filename)

print('Please check: %s ' % save_dir)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 获取字符串MD5值方法

工作中用到了MD5值来进行对文件校验,MD5本身就是一个很出色的算法,一定程度上解决了hash散列的冲突,关于MD5的内容网上也有很多,这里只要是进行一个实验,验证一下文件校验方面的工作...

用python做一个搜索引擎(Pylucene)的实例代码

用python做一个搜索引擎(Pylucene)的实例代码

1.什么是搜索引擎? 搜索引擎是“对网络信息资源进行搜集整理并提供信息查询服务的系统,包括信息搜集、信息整理和用户查询三部分”。如图1是搜索引擎的一般结构,信息搜集模块从网络采集信息到网...

python list格式数据excel导出方法

如下所示: # _*_ coding:utf-8 _*_ #----------------------------------------------- # import mod...

python实现按行分割文件

本文实例为大家分享了python实现按行分割文件的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python #--*-- coding:utf-8 --*--...

python 统计文件中的字符串数目示例

题目: 一个txt文件中已知数据格式为: C4D C4D/maya C4D C4D/su C4D/max/AE 统计每个字段出现的次数,比如C4D、maya 先读取文件,将文件中的数据抽...