pytorch 利用lstm做mnist手写数字识别分类的实例

yipeiwu_com6年前Python基础

代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式。

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 9 08:53:25 2018
@author: www
"""
 
import sys
sys.path.append('..')
 
import torch
import datetime
from torch.autograd import Variable
from torch import nn
from torch.utils.data import DataLoader
 
from torchvision import transforms as tfs
from torchvision.datasets import MNIST
 
#定义数据
data_tf = tfs.Compose([
   tfs.ToTensor(),
   tfs.Normalize([0.5], [0.5])
])
train_set = MNIST('E:/data', train=True, transform=data_tf, download=True)
test_set = MNIST('E:/data', train=False, transform=data_tf, download=True)
 
train_data = DataLoader(train_set, 64, True, num_workers=4)
test_data = DataLoader(test_set, 128, False, num_workers=4)
 
#定义模型
class rnn_classify(nn.Module):
   def __init__(self, in_feature=28, hidden_feature=100, num_class=10, num_layers=2):
     super(rnn_classify, self).__init__()
     self.rnn = nn.LSTM(in_feature, hidden_feature, num_layers)#使用两层lstm
     self.classifier = nn.Linear(hidden_feature, num_class)#将最后一个的rnn使用全连接的到最后的输出结果
     
   def forward(self, x):
     #x的大小为(batch,1,28,28),所以我们需要将其转化为rnn的输入格式(28,batch,28)
     x = x.squeeze() #去掉(batch,1,28,28)中的1,变成(batch, 28,28)
     x = x.permute(2, 0, 1)#将最后一维放到第一维,变成(batch,28,28)
     out, _ = self.rnn(x) #使用默认的隐藏状态,得到的out是(28, batch, hidden_feature)
     out = out[-1,:,:]#取序列中的最后一个,大小是(batch, hidden_feature)
     out = self.classifier(out) #得到分类结果
     return out
     
net = rnn_classify()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adadelta(net.parameters(), 1e-1)
 
#定义训练过程
def get_acc(output, label):
  total = output.shape[0]
  _, pred_label = output.max(1)
  num_correct = (pred_label == label).sum().item()
  return num_correct / total
  
  
def train(net, train_data, valid_data, num_epochs, optimizer, criterion):
  if torch.cuda.is_available():
    net = net.cuda()
  prev_time = datetime.datetime.now()
  for epoch in range(num_epochs):
    train_loss = 0
    train_acc = 0
    net = net.train()
    for im, label in train_data:
      if torch.cuda.is_available():
        im = Variable(im.cuda()) # (bs, 3, h, w)
        label = Variable(label.cuda()) # (bs, h, w)
      else:
        im = Variable(im)
        label = Variable(label)
      # forward
      output = net(im)
      loss = criterion(output, label)
      # backward
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
 
      train_loss += loss.item()
      train_acc += get_acc(output, label)
 
    cur_time = datetime.datetime.now()
    h, remainder = divmod((cur_time - prev_time).seconds, 3600)
    m, s = divmod(remainder, 60)
    time_str = "Time %02d:%02d:%02d" % (h, m, s)
    if valid_data is not None:
      valid_loss = 0
      valid_acc = 0
      net = net.eval()
      for im, label in valid_data:
        if torch.cuda.is_available():
          im = Variable(im.cuda())
          label = Variable(label.cuda())
        else:
          im = Variable(im)
          label = Variable(label)
        output = net(im)
        loss = criterion(output, label)
        valid_loss += loss.item()
        valid_acc += get_acc(output, label)
      epoch_str = (
        "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "
        % (epoch, train_loss / len(train_data),
          train_acc / len(train_data), valid_loss / len(valid_data),
          valid_acc / len(valid_data)))
    else:
      epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %
             (epoch, train_loss / len(train_data),
             train_acc / len(train_data)))
    prev_time = cur_time
    print(epoch_str + time_str)
    
train(net, train_data, test_data, 10, optimizer, criterion)    

以上这篇pytorch 利用lstm做mnist手写数字识别分类的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python如何为图片添加水印

Python如何为图片添加水印

添加水印的主要目的是为了版权保护,使自己的图像不被抄袭或者恶意转载。网上有很多制作水印的工具,本帖介绍怎么使用Python-Pillow库给图片添加水印。 使用ImageMagick添加...

python实现ID3决策树算法

决策树之ID3算法及其Python实现,具体内容如下 主要内容 决策树背景知识 决策树一般构建过程 ID3算法分裂属性的选择 ID3算法流程及其优缺点分析 ID3算法Python代码...

python机器学习之神经网络(二)

python机器学习之神经网络(二)

由于Rosenblatt感知器的局限性,对于非线性分类的效果不理想。为了对线性分类无法区分的数据进行分类,需要构建多层感知器结构对数据进行分类,多层感知器结构如下: 该网络由输入层,...

python 编程之twisted详解及简单实例

python 编程之twisted详解 前言:  我不擅长写socket代码。一是用c写起来比较麻烦,二是自己平时也没有这方面的需求。等到自己真正想了解的时候,才发现自己在这方...

Python通过正则表达式选取callback的方法

本文实例讲述了Python通过正则表达式选取callback的方法。分享给大家供大家参考。具体如下: 最近在瞎想怎么通过xpath去精确抓取文章的正文,跟parselets类似的想法,只...