pytorch nn.Conv2d()中的padding以及输出大小方式

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

conv1=nn.Conv2d(1,2,kernel_size=3,padding=1)
conv2=nn.Conv2d(1,2,kernel_size=3)
 
inputs=torch.Tensor([[[[1,2,3],
           [4,5,6],
           [7,8,9]]]])
print("input size: ",inputs.shape)
outputs1=conv1(inputs)
print("output1 size: ",outputs1.shape)
outputs2=conv2(inputs)
print("output2 size: ",outputs2.shape)
 
输出:
input size: torch.Size([1, 1, 3, 3])
output1 size: torch.Size([1, 2, 3, 3])
output2 size: torch.Size([1, 2, 1, 1])

padding是指卷积前进行padding,这样保证输出的图像形状大小与输入相同,但是通道数channel改变了。

以上这篇pytorch nn.Conv2d()中的padding以及输出大小方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈python中scipy.misc.logsumexp函数的运用场景

scipy.misc.logsumexp函数的输入参数有(a, axis=None, b=None, keepdims=False, return_sign=False),具体配置可参见...

Selenium定位元素操作示例

本文实例讲述了Selenium定位元素操作。分享给大家供大家参考,具体如下: Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在...

Python3安装Pymongo详细步骤

Python3安装Pymongo详细步骤

本篇教程展示如何安装Pymongo库,编辑器使用的当然是pycharm。 准备 我们这里直接使用pycharm来安装Pymongo库,和pycharm的mongodb相关管理插件。 安装...

解决python大批量读写.doc文件的问题

前言: java语言读写.doc的出现乱码问题: 大家都知道当我们利用java语言读写.doc文件时,无论是利用流的方式将.doc文件的内容输出到控制台(console),还是将其写到其...

使用Tensorflow将自己的数据分割成batch训练实例

使用Tensorflow将自己的数据分割成batch训练实例

学习神经网络的时候,网上的数据集已经分割成了batch,训练的时候直接使用batch.next()就可以获取batch,但是有的时候需要使用自己的数据集,然而自己的数据集不是batch形...