在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com6年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实例之wxpython中Frame使用方法

本节为大家分享的例子是wxpython Frame的用法。 例子: 复制代码 代码如下:#!/usr/bin/python  # -*- coding: GBK -*-&nb...

django 微信网页授权认证api的步骤详解

微信网页授权认证 根据微信官方文档,网页授权需要四个步骤, - 用户同意授权-获取code - 通过code 获取网页授权access_token - 通过code 获取网页授权...

python实现简单ftp客户端的方法

本文实例讲述了python实现简单ftp客户端的方法。分享给大家供大家参考。具体实现方法如下: #!/usr/bin/python # -*- coding: utf-8 -*- i...

Python实现生成随机数据插入mysql数据库的方法

Python实现生成随机数据插入mysql数据库的方法

本文实例讲述了Python实现生成随机数据插入mysql数据库的方法。分享给大家供大家参考,具体如下: 运行结果: 实现代码: import random as r import...

Python文件操作基本流程代码实例

Python文件操作基本流程代码实例

文件操作之基本流程 #文本 近日,上市药企——浙江莎普爱思药业股份有限公司频遭质疑。 12月2日,一篇名为《一年卖出7.5亿的洗脑“神药”,请放过中国老人》的文章称, 多位眼科医生并不认...