在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com5年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python处理json数据中的中文

python中自带了处理python的模块,使用时候直接import json即可。 使用loads方法即可将json字符串转换成python对象,对应关系如下: JSON ...

Python实现动态添加属性和方法操作示例

本文实例讲述了Python实现动态添加属性和方法操作。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #!python3 class Person()...

django中SMTP发送邮件配置详解

django中SMTP发送邮件配置详解

Django中内置了邮件发送功能,被定义在django.core.mail模块中。发送邮件需要使用SMTP服务器,常用的免费服务器有:163、126、QQ,下面以qq邮箱为例。 注册qq...

对python指数、幂数拟合curve_fit详解

对python指数、幂数拟合curve_fit详解

1、一次二次多项式拟合 一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。 2、指数幂数拟合curve_fit 使用scipy.optimiz...

Pycharm设置去除显示的波浪线方法

Pycharm设置去除显示的波浪线方法

近期安装了python后,发现使用pycharm工具打开代码后发现代码下边会有波浪线的显示;但是该代码语句确实没有错误,通过查询发现了两种方法去掉该波纹的显示,下面就具体说明一下: 方法...