在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com6年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 利用切片从列表中取出一部分使用的方法

我想从列表中取出一部分拿来使用,可以创建切片,指定需要使用的第一个元素和最后一个元素的索引 使用例子,说明切片的使用 #创建一个数字列表,代表我有100页文章,然后进行分页显示 ma...

django框架中间件原理与用法详解

django框架中间件原理与用法详解

本文实例讲述了django框架中间件原理与用法。分享给大家供大家参考,具体如下: 中间件:轻量级,介于 request和response之间的一道处理过程,在全局上改变了输入和输出 在d...

Python用list或dict字段模式读取文件的方法

前言 Python用于处理文本数据绝对是个利器,极为简单的读取、分割、过滤、转换支持,使得开发者不需要考虑繁杂的流文件处理过程(相对于JAVA来说的,嘻嘻)。博主自己工作中,一些复杂的文...

python进阶_浅谈面向对象进阶

学了面向对象三大特性继承,多态,封装。今天我们看看面向对象的一些进阶内容,反射和一些类的内置函数。 一、isinstance和issubclass class Foo: pass...

使用python将多个excel文件合并到同一个文件的方法

使用python将多个excel文件合并到同一个文件的方法

应用场景:使用pandas把多个相同结构的Excel文件合并为一个。 原始数据:   相关代码: import os import pandas as pd # 将文...