在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com5年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PyQt5的PyQtGraph实践系列3之实时数据更新绘制图形

PyQt5的PyQtGraph实践系列3之实时数据更新绘制图形

在之前介绍PyQtGraph的文章中,我们都是一次性的获取数据并将其绘制为图形。然而在很多场景中,我们都需要对实时的数据进行图形化展示,比如:股票的实时行情、仪器设备的实时状态等,这时候...

Python分布式进程中你会遇到的问题解析

Python分布式进程中你会遇到的问题解析

小惊大怪 你是不是在用Python3或者在windows系统上编程?最重要的是你对进程和线程不是很清楚?那么恭喜你,在python分布式进程中,会有坑等着你去挖。。。(h...

Python作用域用法实例详解

本文实例分析了Python作用域用法。分享给大家供大家参考,具体如下: 每一个编程语言都有变量的作用域的概念,Python也不例外,以下是Python作用域的代码演示: def sc...

Python面向对象程序设计构造函数和析构函数用法分析

本文实例讲述了Python面向对象程序设计构造函数和析构函数用法。分享给大家供大家参考,具体如下: 构造函数和析构函数 1、构造方法的使用 很多类都倾向于将对象创建为有初始化状态.因此类...

python基于http下载视频或音频

一、简介 这里介绍使用python基于http下载视频或音频。 二、关键点 1、断点续传 视频或音频文件一般比较大,所以通过需要断点续传。方式通过在http的header里添加Range...