在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com6年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现发送邮件功能

python实现发送邮件功能

本文实例为大家分享了python实现发送邮件功能的具体代码,供大家参考,具体内容如下 依赖: Python代码实现发送邮件,使用的模块是smtplib、MIMEText,实现代码之前需要...

使用Python调取任意数字资产钱包余额功能

使用Python调取任意数字资产钱包余额功能

当我们的资产放在交易所的时候,可以通过链接交易所的API使用Python来监控余额。 那资产放在钱包的时候,如何来监控余额呢? 任何数字资产都可以使用区块浏览器来查询余额,那我们只要从此...

python实现求解列表中元素的排列和组合问题

 求解列表中元素的排列和组合问题这个问题之前就遇到过几次没有太留意,最近在做题的时候遇上挺多的排列组合问题的,想来有必要温习一下了,今天花点时间写一下,之前都是手工写的,后来知...

Python绘制3D图形

Python绘制3D图形

3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3...

softmax及python实现过程解析

softmax及python实现过程解析

相对于自适应神经网络、感知器,softmax巧妙低使用简单的方法来实现多分类问题。 功能上,完成从N维向量到M维向量的映射 输出的结果范围是[0, 1],对于一个sample的...