在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com6年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于Python实现文件大小输出

基于Python实现文件大小输出

在数据库中存储时,使用 Bytes 更精确,可扩展性和灵活性都很高。 输出时,需要做一些适配。 1. 注意事项与测试代码 1.需要考虑 sizeInBytes 为 None 的场景。...

对python使用http、https代理的实例讲解

在国内利用Python从Internet上爬取数据时,有些网站或API接口被限速或屏蔽,这时使用代理可以加速爬取过程,减少请求失败,Python程序使用代理的方法主要有以下几种: (1)...

Django重置migrations文件的方法步骤

Django开发过程中如果数据库变动过多导致migrations的文件越来越多,管理起来很不方便, 幸运的是Django提供了一种方式可以是这些文件重置到0001状态,而且不删除原有数据...

Python中模块string.py详解

一、用法 字符串常量: import string print(string.ascii_lowercase) print(string.ascii_uppercase) pri...

django 环境变量配置过程详解

django 环境变量配置过程详解

刚开始使用django,在创建第一个app时被提示不知道命令runserver,百度得出是环境变量的问题。 1、配置python变量环境,C:\Python27\;C:\Python27...