在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com6年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python之列表的插入&替换修改方法

用例子说明 fruit = ['pineapple','grape','pear'] fruit[0:0] = ['Orange'] #在fruit集合中第一位插入字符串'Ora...

web.py在SAE中的Session问题解决方法(使用mysql存储)

这段时间一直想尝试着在SAE中使用Python,初步选择了Web.py框架做为开发框架,但是可怜SAE上的资料少的可怜,有点问题基本上解决不了,今天解决一个Session在Session...

Python连接MySQL并使用fetchall()方法过滤特殊字符

来一个简单的例子,看Python如何操作数据库,相比Java的JDBC来说,确实非常简单,省去了很多复杂的重复工作,只关心数据的获取与操作。 准备工作 需要有相应的环境和模块: U...

测试、预发布后用python检测网页是否有日常链接

在大的互联网公司干技术的基本都会碰到测试、预发布、线上这种多套环境的,来实现测试和线上正式环境的隔离,这种情况下,就难免会碰到秀逗了把测试的链接发布到线上的情况,一般这种都是通过一些测试...

pandas DataFrame实现几列数据合并成为新的一列方法

pandas DataFrame实现几列数据合并成为新的一列方法

问题描述 我有一个用于模型训练的DataFrame如下图所示: 其中的country、province、city、county四列其实是位置信息的不同层级,应该合成一列用于模型训练 方...