在pytorch中对非叶节点的变量计算梯度实例

yipeiwu_com5年前Python基础

在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行。

注册hook函数

Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在每次计算 关于该张量 的时候 被调用,经常用于调试的时候打印出非叶节点梯度。当然,通过这个手段,你也可以自定义某一层的梯度更新方法。[3] 具体到这里的打印非叶节点的梯度,代码如:

def hook_y(grad):
 print(grad)

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
z = y * y * 3

y.register_hook(hook_y) 

out = z.mean()
out.backward()

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

retain_grad()

Tensor.retain_grad()显式地保存非叶节点的梯度,当然代价就是会增加显存的消耗,而用hook函数的方法则是在反向计算时直接打印,因此不会增加显存消耗,但是使用起来retain_grad()要比hook函数方便一些。代码如:

x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
y.retain_grad()
z = y * y * 3
out = z.mean()
out.backward()
print(y.grad)

输出如:

tensor([[4.5000, 4.5000],
  [4.5000, 4.5000]])

以上这篇在pytorch中对非叶节点的变量计算梯度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

安装python时MySQLdb报错的问题描述及解决方法

问题描述: windows安装python mysqldb时报错python version 2.7 required,which was not found in the regist...

python 多线程将大文件分开下载后在合并的实例

废话不多说了,上代码吧: import threading import requests import time import os class Mythread(thread...

python http基本验证方法

如下所示: #!usr/bin/env python # -*- coding: utf-8 -*- import urllib2 LOGIN = "" PASSWORD = "...

Python3.6基于正则实现的计算器示例【无优化简单注释版】

Python3.6基于正则实现的计算器示例【无优化简单注释版】

本文实例讲述了Python3.6基于正则实现的计算器。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #!python3 import re impo...

对Python通过pypyodbc访问Access数据库的方法详解

对Python通过pypyodbc访问Access数据库的方法详解

看书上通过ODBC访问数据库的案例,想实践一下在Python 3.6.1中实现access2003数据库的链接,但是在导入odbc模块的时候出现了问题,后来查了一些资料就尝试着使用pyp...