解决Pytorch 加载训练好的模型 遇到的error问题

yipeiwu_com6年前Python基础

这是一个非常愚蠢的错误

debug的时候要好好看error信息

提醒自己切记好好对待error!切记!切记!

-----------------------分割线----------------

pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令

#保存整个网络和参数
torch.save(your_net, 'save_name.pkl')
#加载保存的模型
net = torch.load('save_name.pkl')

因为我比较懒我就想直接把整个网络都保存下来,然后在test文件中直接load一下不就好了?

就遭受了这样的错误。看错了error信息,把‘Net'看成‘net'。报错没有属性‘net'?这个不是我自己写的变量名么?

-----------------瞎捣鼓1h后(呵呵呵)----------------

回头看error,没有属性‘Net',Net???

我当下明白过来,应该是test文件中没有把它import进来,test中就没有任何关于Net的信息。我直接把定义的Net复制进了test.py,就顺利加载了训练好的模型。

但是我也有一个疑问,我理解的把整个模型保存难道不是把它的结构都保存下来了么?为什么还要再把这个网络import一次?来自python、pytorch、面向对象编程三次元小白的疑惑,先存个疑,搞懂了再来回答。

接下来试试只保存网络参数

#只保存网络参数
torch.save(your_net.state_dict(), 'save_name.pkl')
#加载保存的模型
net.load_state_dict(torch.load('save_name.pkl'))

保存网络参数

重新定义网络

报错

想死。。。

仔细看了报错信息,以我小白的理解,我感觉保存下来的可能只是单纯的数据,而不是一个对象(没有方法可以操作),或者该对象没有.copy()方法,所以没有办法进行.copy(),那肯定是保存哪里出错了。然后发现保存部分代码写错了,改成

print一下 net.state_dict和net.state_dict(),前者输出的是网络结构,后者才是网络的参数。

试着回答之前的问题,第二种保存模型的方法只保存了网络的参数(包括卷积层和全连接层每次的weight,bias),所以再加载模型的时候需要先定义网络无可厚非,就像训练时候定义网络那样定义就可以;而第一种保存整个网络的方法,保存了一个网络的实例(包括它的所有结构和参数),net是Net的一个实例,那为什么还要有Class Net的定义呢,还是回答不了。。

那就继续存疑,保持探究精神吧。。

以上这篇解决Pytorch 加载训练好的模型 遇到的error问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python编程中NotImplementedError的使用方法

Python编程中raise可以实现报出错误的功能,而报错的条件可以由程序员自己去定制。在面向对象编程中,可以先预留一个方法接口不实现,在其子类中实现。 如果要求其子类一定要实现,不实现...

用Python的Flask框架结合MySQL写一个内存监控程序

用Python的Flask框架结合MySQL写一个内存监控程序

这里以监控内存使用率为例,写的一个简单demo性程序,具体操作根据51reboot提供的教程写如下。 一、建库建表 创建falcon数据库: mysql> create dat...

Python实现读取TXT文件数据并存进内置数据库SQLite3的方法

本文实例讲述了Python实现读取TXT文件数据并存进内置数据库SQLite3的方法。分享给大家供大家参考,具体如下: 当TXT文件太大,计算机内存不够时,我们可以选择按行读取TXT文件...

python 移动图片到另外一个文件夹的实例

如下所示: # -*- coding:utf8 -*- import os import shutil import numpy as np import pandas as p...

Python的Django框架中模板碎片缓存简介

你同样可以使用cache标签来缓存模板片段。 在模板的顶端附近加入{% load cache %}以通知模板存取缓存标签。 模板标签{% cache %}在给定的时间内缓存了块的内容。...