pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换

yipeiwu_com6年前Python基础

1, 创建pytorch 的Tensor张量:

torch.rand((3,224,224)) #创建随机值的三维张量,大小为(3,224,224)
 
torch.Tensor([3,2]) #创建张量,[3,2]

2, cpu上的tensor和GPU即pytorch创建的tensor的相互转化

b = a.cpu() # GPU → CPU
 
a = b.cuda() #CPU → GPU

3, tensor和numpy的转化

b = a.numpy() # tensor转化为 numpy数组
 
a = b.from_numpy() # numpy数组转化为tensor

4, torch的GPU tensor保存为图片

import scipy.misc
 
scipy.misc.imsave(‘pic_name',img) #img为二维张量,比如(224,224),保存为黑白图

5, 堆叠矩阵,形成彩色图片

img = np.stack((ia,b,c),dim) #堆叠矩阵a,b,c 可用于三通道图像的保存 dim表示要增加的维度,
#比如a,b,c均为(224,224)大小的矩阵,那么令dim=-1,则 img的维度为(224,224,3)

6, 从numpy数组保存图片

from PIL import Image
 
im = Image.fromarray(A)
 
im.save("your_file.jpeg")

7, 读取图片为矩阵:

import matplotlib.image
im = matplotlib.image.imread('0_0.jpg')

8, 保存矩阵为图片:

import numpy as np
import scipy.misc
 
x = np.random.random((600,800,3))
scipy.misc.imsave('meelo.jpg', x)

以上这篇pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

windows10下安装TensorFlow Object Detection API的步骤

windows10下安装TensorFlow Object Detection API的步骤

安装步骤: 模型源码:https://github.com/tensorflow/models 1、下载源码后解压,修改文件夹名为models (以下步骤中涉及到路径的地方需要根据自己的...

python2.7安装图文教程

python2.7安装图文教程

Python安装过程,供大家参考,具体内容如下 1.下载安装程序 我们安装Python的一个重要目的是为了用IAR编译CC2640 OAD文件时执行合并文件的脚本,所以我们一起来看看Py...

python中迭代器(iterator)用法实例分析

本文实例讲述了python中迭代器(iterator)用法。分享给大家供大家参考。具体如下: #--------------------------------------- #...

Python科学计算环境推荐——Anaconda

Python科学计算环境推荐——Anaconda

Anaconda是一个和Canopy类似的科学计算环境,但用起来更加方便。自带的包管理器conda也很强大。 首先是下载安装。Anaconda提供了Python2.7和Python3.4...

解决Python计算矩阵乘向量,矩阵乘实数的一些小错误

解决Python计算矩阵乘向量,矩阵乘实数的一些小错误

计算:Ax-b A: 2*2 x: 2*1 b: 2*1 so, Ax-b: 2*1 if __name__ == "__main__": A = np.array([[...