pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换

yipeiwu_com5年前Python基础

1, 创建pytorch 的Tensor张量:

torch.rand((3,224,224)) #创建随机值的三维张量,大小为(3,224,224)
 
torch.Tensor([3,2]) #创建张量,[3,2]

2, cpu上的tensor和GPU即pytorch创建的tensor的相互转化

b = a.cpu() # GPU → CPU
 
a = b.cuda() #CPU → GPU

3, tensor和numpy的转化

b = a.numpy() # tensor转化为 numpy数组
 
a = b.from_numpy() # numpy数组转化为tensor

4, torch的GPU tensor保存为图片

import scipy.misc
 
scipy.misc.imsave(‘pic_name',img) #img为二维张量,比如(224,224),保存为黑白图

5, 堆叠矩阵,形成彩色图片

img = np.stack((ia,b,c),dim) #堆叠矩阵a,b,c 可用于三通道图像的保存 dim表示要增加的维度,
#比如a,b,c均为(224,224)大小的矩阵,那么令dim=-1,则 img的维度为(224,224,3)

6, 从numpy数组保存图片

from PIL import Image
 
im = Image.fromarray(A)
 
im.save("your_file.jpeg")

7, 读取图片为矩阵:

import matplotlib.image
im = matplotlib.image.imread('0_0.jpg')

8, 保存矩阵为图片:

import numpy as np
import scipy.misc
 
x = np.random.random((600,800,3))
scipy.misc.imsave('meelo.jpg', x)

以上这篇pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 中包/模块的 `import` 操作代码

用实例来说明 import 的作用吧。 创建以下包结构。一个文件夹 cookFish/,下面包含两个文件, __init__.py和cookBook.py。 为什么取这几个名字呢?假设我...

python使用xmlrpclib模块实现对百度google的ping功能

本文实例讲述了python使用xmlrpclib模块实现对百度google的ping功能。分享给大家供大家参考。具体分析如下: 最近在做SEO的时候,为了让发的外链能够快速的收录,想到了...

利用Python获取操作系统信息实例

前言 每一位运维人员都应该对自己所管理的机器配置很清楚,因为这对我们快速处理问题很有帮助,比如随着业务增长,突然某些机器负载上涨的厉害,这时候要排查原因,除了从应用程序、架构上分析外,当...

Python生成随机数的方法

如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与random模块中最常用的几个函数的关系,希望你会有所收获,...

python3 实现的人人影视网站自动签到

这是一个自动化程度较高的程序,运行本程序后会从chrome中读取cookies用于登录人人影视签到, 并且会自动添加一个windows 任务计划,这个任务计划每天下午两点会执行本程序进行...