关于ResNeXt网络的pytorch实现

yipeiwu_com5年前Python基础

此处需要pip install pretrainedmodels

"""
Finetuning Torchvision Models

"""

from __future__ import print_function 
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
import pretrainedmodels.models.resnext as resnext

print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)


# Top level data directory. Here we assume the format of the directory conforms 
#  to the ImageFolder structure
#data_dir = "./data/hymenoptera_data"
data_dir = "/media/dell/dell/data/13/"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnext"

# Number of classes in the dataset
num_classes = 171

# Batch size for training (change depending on how much memory you have)
batch_size = 16

# Number of epochs to train for 
num_epochs = 1000

# Flag for feature extracting. When False, we finetune the whole model, 
#  when True we only update the reshaped layer params
feature_extract = False

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch seresnet')
parser.add_argument('--outf', default='/home/dell/Desktop/zhou/train7', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='/home/dell/Desktop/zhou/train7/resnext.pth', help="path to net (to continue training)") #恢复训练时的模型路径
args = parser.parse_args()


def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):
#def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,scheduler, is_inception=False):
  since = time.time()

  val_acc_history = []
  
  best_model_wts = copy.deepcopy(model.state_dict())
  best_acc = 0.0
  print("Start Training, resnext!") # 定义遍历数据集的次数
  with open("/home/dell/Desktop/zhou/train7/acc.txt", "w") as f1:
    with open("/home/dell/Desktop/zhou/train7/log.txt", "w")as f2:
      for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch+1, num_epochs))
        print('*' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
          if phase == 'train':
            #scheduler.step()
            model.train() # Set model to training mode
          else:
            model.eval()  # Set model to evaluate mode
    
          running_loss = 0.0
          running_corrects = 0
    
          # Iterate over data.
          for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
    
            # zero the parameter gradients
            optimizer.zero_grad()
    
            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):
              # Get model outputs and calculate loss
              # Special case for inception because in training it has an auxiliary output. In train
              #  mode we calculate the loss by summing the final output and the auxiliary output
              #  but in testing we only consider the final output.
              if is_inception and phase == 'train':
                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                outputs, aux_outputs = model(inputs)
                loss1 = criterion(outputs, labels)
                loss2 = criterion(aux_outputs, labels)
                loss = loss1 + 0.4*loss2
              else:
                outputs = model(inputs)
                loss = criterion(outputs, labels)
    
              _, preds = torch.max(outputs, 1)
    
              # backward + optimize only if in training phase
              if phase == 'train':
                loss.backward()
                optimizer.step()
    
            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
          epoch_loss = running_loss / len(dataloaders[phase].dataset)
          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
          print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('\n')
          f2.flush()           
          # deep copy the model
          if phase == 'val':
            if (epoch+1)%5==0:
              #print('Saving model......')
              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, 100*epoch_acc))
            f1.write('\n')
            f1.flush()
          if phase == 'val' and epoch_acc > best_acc:
            f3 = open("/home/dell/Desktop/zhou/train7/best_acc.txt", "w")
            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,100*epoch_acc))
            f3.close()
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())
          if phase == 'val':
            val_acc_history.append(epoch_acc)

  time_elapsed = time.time() - since
  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
  print('Best val Acc: {:4f}'.format(best_acc))
  # load best model weights
  model.load_state_dict(best_model_wts)
  return model, val_acc_history


def set_parameter_requires_grad(model, feature_extracting):
  if feature_extracting:
    for param in model.parameters():
      param.requires_grad = False



def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
  # Initialize these variables which will be set in this if statement. Each of these
  #  variables is model specific.
  model_ft = None
  input_size = 0

  if model_name == "resnet":
    """ Resnet18
    """
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)
    input_size = 224

  elif model_name == "alexnet":
    """ Alexnet
    """
    model_ft = models.alexnet(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "vgg":
    """ VGG11_bn
    """
    model_ft = models.vgg11_bn(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "squeezenet":
    """ Squeezenet
    """
    model_ft = models.squeezenet1_0(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
    model_ft.num_classes = num_classes
    input_size = 224

  elif model_name == "densenet":
    """ Densenet
    """
    model_ft = models.densenet121(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_ftrs, num_classes) 
    input_size = 224

  elif model_name == "resnext":
    """ resnext
    Be careful, expects (3,224,224) sized images 
    """
    model_ft = resnext.resnext101_64x4d(num_classes=1000, pretrained='imagenet')
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.last_linear = nn.Linear(2048, num_classes)   
    #pre='/home/dell/Desktop/zhou/train6/inception_009.pth'
    #model_ft.load_state_dict(torch.load(pre))
    input_size = 224

  else:
    print("Invalid model name, exiting...")
    exit()
  
  return model_ft, input_size

# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)

# Print the model we just instantiated
#print(model_ft) 



data_transforms = {
  'train': transforms.Compose([
    transforms.RandomResizedCrop(input_size),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
  'val': transforms.Compose([
    transforms.Resize(input_size),
    transforms.CenterCrop(input_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
}

print("Initializing Datasets and Dataloaders...")


# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}

# Detect if we have a GPU available
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")

#we='/home/dell/Desktop/dj/inception_050.pth'
#model_ft.load_state_dict(torch.load(we))#diaoyong
# Send the model to GPU
model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
  params_to_update = []
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      params_to_update.append(param)
      print("\t",name)
else:
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.01, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
print(model_ft)
# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=False)

以上这篇关于ResNeXt网络的pytorch实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python并发编程多进程 互斥锁原理解析

运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的 互斥锁 但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同...

python中threading超线程用法实例分析

本文实例讲述了python中threading超线程用法。分享给大家供大家参考。具体分析如下: threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition...

python变量命名的7条建议

前言 Quora 问答社区的一个开发者投票统计,程序员最大的难题是:如何命名(例如:给变量,类,函数等等),光是如何命名一项的选票几乎是其它八项的投票结果的总和。如何给变量命名,如何让它...

Django卸载之后重新安装的方法

前言 大家应该都有所体会,在不同的项目可能会使用不同的Django版本,兼任性是大问题,如果不幸要去接手不同版本的项目,比较惨烈! 如果想重装一个Django版本,需要先卸载后安装。...

Python字典及字典基本操作方法详解

本文实例讲述了Python字典及字典基本操作方法。分享给大家供大家参考,具体如下: 字典是一种通过名字或者关键字引用的得数据结构,其键可以是数字、字符串、元组,这种结构类型也称之为映射。...