pytorch实现mnist数据集的图像可视化及保存

yipeiwu_com5年前Python基础

如何将pytorch中mnist数据集的图像可视化及保存

导出一些库

import torch
import torchvision 
import torch.utils.data as Data 
import scipy.misc
import os
import matplotlib.pyplot as plt   
BATCH_SIZE = 50  
DOWNLOAD_MNIST = True 

数据集的准备

#训练集测试集的准备

train_data = torchvision.datasets.MNIST(root='./mnist/', train=True,transform=torchvision.transforms.ToTensor(),              
  download=DOWNLOAD_MNIST, )
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)

将训练及测试集利用dataloader进行迭代

train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), requires_grad=True).type(torch.FloatTensor)[:20]/255 
test_y = test_data.test_labels[:20]#前两千张
 #具体查看图像形式为:
 
a_data, a_label = train_data[0]
print(type(a_data))#tensor 类型
#print(a_data)
print(a_label)

#把原始图片保存至MNIST_data/raw/下
save_dir="mnist/raw/"
if os.path.exists(save_dir)is False:
 os.makedirs(save_dir)
 
for i in range(20):
 image_array,_=train_data[i]#打印第i个
 image_array=image_array.resize(28,28)
 filename=save_dir + 'mnist_train_%d.jpg' % i#保存文件的格式
 print(filename)
 print(train_data.train_labels[i])#打印出标签
 scipy.misc.toimage(image_array,cmin=0.0,cmax=1.0).save(filename)#保存图像

以上这篇pytorch实现mnist数据集的图像可视化及保存就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python静态方法实例

本文实例讲述了python静态方法。分享给大家供大家参考。 具体实现方法如下: 复制代码 代码如下:staticmethod Found at: __builtin__ staticme...

Python实现读写INI配置文件的方法示例

本文实例讲述了Python实现读写INI配置文件的方法。分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- import ConfigParser im...

Python中的日期时间处理详解

Python中的日期时间处理详解

Python中关于时间、日期的处理库有三个:time、datetime和Calendar,其中datetime又有datetime.date、datetime.time、datetime...

python文件与目录操作实例详解

本文实例分析了python文件与目录操作的方法。分享给大家供大家参考,具体如下: 关于python文件操作的详细说明,大家可以参考前一篇《python文件操作相关知识点总结整理》 官方A...

tensorflow中next_batch的具体使用

本文介绍了tensorflow中next_batch的具体使用,分享给大家,具体如下: 此处给出了几种不同的next_batch方法,该文章只是做出代码片段的解释,以备以后查看:...