pytorch实现mnist数据集的图像可视化及保存

yipeiwu_com5年前Python基础

如何将pytorch中mnist数据集的图像可视化及保存

导出一些库

import torch
import torchvision 
import torch.utils.data as Data 
import scipy.misc
import os
import matplotlib.pyplot as plt   
BATCH_SIZE = 50  
DOWNLOAD_MNIST = True 

数据集的准备

#训练集测试集的准备

train_data = torchvision.datasets.MNIST(root='./mnist/', train=True,transform=torchvision.transforms.ToTensor(),              
  download=DOWNLOAD_MNIST, )
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)

将训练及测试集利用dataloader进行迭代

train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), requires_grad=True).type(torch.FloatTensor)[:20]/255 
test_y = test_data.test_labels[:20]#前两千张
 #具体查看图像形式为:
 
a_data, a_label = train_data[0]
print(type(a_data))#tensor 类型
#print(a_data)
print(a_label)

#把原始图片保存至MNIST_data/raw/下
save_dir="mnist/raw/"
if os.path.exists(save_dir)is False:
 os.makedirs(save_dir)
 
for i in range(20):
 image_array,_=train_data[i]#打印第i个
 image_array=image_array.resize(28,28)
 filename=save_dir + 'mnist_train_%d.jpg' % i#保存文件的格式
 print(filename)
 print(train_data.train_labels[i])#打印出标签
 scipy.misc.toimage(image_array,cmin=0.0,cmax=1.0).save(filename)#保存图像

以上这篇pytorch实现mnist数据集的图像可视化及保存就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python字符串和文件操作常用函数分析

本文实例分析了Python字符串和文件操作常用函数。分享给大家供大家参考。具体如下: # -*- coding: UTF-8 -*- ''' Created on 2010-12-2...

Python中文编码知识点

Python中文编码知识点

如何用 Python 输出 "Hello, World!",英文没有问题,但是如果你输出中文字符"你好,世界"就有可能会碰到中文编码问题。 Python 文件中如果未指定编码,在执行过程...

Django使用httpresponse返回用户头像实例代码

Django使用httpresponse返回用户头像实例代码

本文研究的主要是Django使用httpresponse返回用户头像,下面是相关实例代码。 当请求一个页面时,Django 把请求的 metadata 数据包装成一个 HttpReque...

python 连接各类主流数据库的实例代码

本篇博文主要介绍Python连接各种数据库的方法及简单使用 包括关系数据库:sqlite,mysql,mssql 非关系数据库:MongoDB,Redis 代码写的比较清楚,直接上代码...

对python3 中方法各种参数和返回值详解

如下所示: # -*- coding:utf-8 -*- # Author: Evan Mi # 函数 def func1(): print('in the func...