pytorch常见的Tensor类型详解

yipeiwu_com6年前Python基础

Tensor有不同的数据类型,每种类型分别有对应CPU和GPU版本(HalfTensor除外)。默认的Tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认类型为GPU tensor,则所有操作都将在GPU上进行)。

Tensor的类型对分析内存占用很有帮助,例如,一个size为(1000,1000,1000)的FloatTensor,它有1000*1000*1000=10^9个元素,每一个元素占用32bit/8=4Byte内存,所以共占用大约4GB内存/显存。HalfTensor是专为GPU版本设计的,同样的元素个数,显存占用只有HalfTensor的一半,所以可以极大缓解GPU显存不足的问题,但是由于HalfTensor所能表示的数值大小和精度有限,所以可能出现溢出等问题。

数据类型 CPU Tensor GPU Tensor
32 bit 浮点 torch.FloatTensor torch.cuda.FloatTensor
64 bit 浮点 torch.DoubleTensor torch.cuda.DoubleTensor
16 bit 半精度浮点 N/A torch.cuda.HalfTensor
8 bit 无符号整形(0~255) torch.ByteTensor torch.cuda.ByteTensor
8 bit 有符号整形(-128~127) torch.CharTensor torch.cuda.CharTensor
16 bit 有符号整形 torch.ShortTensor torch.cuda.ShortTensor
32 bit 有符号整形 torch.IntTensor torch.cuda.IntTensor
64 bit 有符号整形 torch.LongTensor torch.cuda LongTensor

各数据类型之间可以互相转换,type(new_type)是通用的做法,同时还有float、long、half等快捷方法。CPU tensor和GPU tensor之间的互换是通过tensor.cudatensor.cpu的方法实现。

如:

#设置默认tensor,注意参数是字符串
torch.set_default_tensor_type('torch.IntTensor')
 
a=torch.Tensor(2,3)
print(a)  #a现在是IntTensor

以上这篇pytorch常见的Tensor类型详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python利用带权重随机数解决抽奖和游戏爆装备问题

Python利用带权重随机数解决抽奖和游戏爆装备问题

关于带权随机数 为了帮助理解,先来看三类随机问题的对比: 1.已有n条记录,从中选取m条记录,选取出来的记录前后顺序不管。 实现思路:按行遍历所有记录,约隔n/m条取一个数据即可 2.在...

python如何实现异步调用函数执行

在实现异步调用之前我们先进行什么是同步调用和异步调用 同步:是指完成事务的逻辑,先执行第一个事务,如果阻塞了,会一直等待,直到这个事务完成,再执行第二个事务,顺序执行 异...

Flask-WTF表单的使用方法

flask_wtf是flask框架的表单验证模块,可以很方便生成表单,也可以当做json数据交互的验证工具,支持热插拔。 安装 pip install Flask-WTF Fla...

Python 判断图像是否读取成功的方法

大批量处理数据时,若因个别图像错误导致代码中断,从头再来比较浪费时间 对未成功读入的图像跳过(读图 import cv2) for i in range(1,1000): imag...

Python中使用Counter进行字典创建以及key数量统计的方法

这里的Counter是指collections中的Counter,通过Counter可以实现字典的创建以及字典key出现频次的统计。然而,使用的时候还是有一点需要注意的小事项。 使用Co...