pytorch常见的Tensor类型详解

yipeiwu_com6年前Python基础

Tensor有不同的数据类型,每种类型分别有对应CPU和GPU版本(HalfTensor除外)。默认的Tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认类型为GPU tensor,则所有操作都将在GPU上进行)。

Tensor的类型对分析内存占用很有帮助,例如,一个size为(1000,1000,1000)的FloatTensor,它有1000*1000*1000=10^9个元素,每一个元素占用32bit/8=4Byte内存,所以共占用大约4GB内存/显存。HalfTensor是专为GPU版本设计的,同样的元素个数,显存占用只有HalfTensor的一半,所以可以极大缓解GPU显存不足的问题,但是由于HalfTensor所能表示的数值大小和精度有限,所以可能出现溢出等问题。

数据类型 CPU Tensor GPU Tensor
32 bit 浮点 torch.FloatTensor torch.cuda.FloatTensor
64 bit 浮点 torch.DoubleTensor torch.cuda.DoubleTensor
16 bit 半精度浮点 N/A torch.cuda.HalfTensor
8 bit 无符号整形(0~255) torch.ByteTensor torch.cuda.ByteTensor
8 bit 有符号整形(-128~127) torch.CharTensor torch.cuda.CharTensor
16 bit 有符号整形 torch.ShortTensor torch.cuda.ShortTensor
32 bit 有符号整形 torch.IntTensor torch.cuda.IntTensor
64 bit 有符号整形 torch.LongTensor torch.cuda LongTensor

各数据类型之间可以互相转换,type(new_type)是通用的做法,同时还有float、long、half等快捷方法。CPU tensor和GPU tensor之间的互换是通过tensor.cudatensor.cpu的方法实现。

如:

#设置默认tensor,注意参数是字符串
torch.set_default_tensor_type('torch.IntTensor')
 
a=torch.Tensor(2,3)
print(a)  #a现在是IntTensor

以上这篇pytorch常见的Tensor类型详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

老生常谈进程线程协程那些事儿

老生常谈进程线程协程那些事儿

一、进程与线程 1.进程 我们电脑的应用程序,都是进程,假设我们用的电脑是单核的,cpu同时只能执行一个进程。当程序出于I/O阻塞的时候,CPU如果和程序一起等待,那就太浪费了,cpu会...

python自动化测试之连接几组测试包实例

本文实例讲述了python自动化测试之连接几组测试包的方法,分享给大家供大家参考。具体方法如下: 具体代码如下: class RomanNumeralConverter(object...

使用Python实现跳帧截取视频帧

本文实例为大家分享了Python跳帧截取视频帧的具体代码,供大家参考,具体内容如下 可以自由设定时长来截取视频,经实测效果理想。期间遇到的一个麻烦是我的视频文件在D:盘,在原视频D盘目录...

使用pandas的DataFrame的plot方法绘制图像的实例

使用pandas的DataFrame的plot方法绘制图像的实例

使用了pandas的Series方法绘制图像体验之后感觉直接用matplotlib的功能好用了不少,又试用了DataFrame的方法之后发现这个更加人性化。 写代码如下: from...

使用PyOpenGL绘制三维坐标系实例

使用PyOpenGL绘制三维坐标系实例

我就废话不多说了,直接上代码吧! def drawCoordinate(): ''' 绘制三维的坐标系,并绘制由坐标轴构成的平面的网格,各个坐标轴的颜色以及由坐标轴所引出的网...