pytorch常见的Tensor类型详解

yipeiwu_com6年前Python基础

Tensor有不同的数据类型,每种类型分别有对应CPU和GPU版本(HalfTensor除外)。默认的Tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认类型为GPU tensor,则所有操作都将在GPU上进行)。

Tensor的类型对分析内存占用很有帮助,例如,一个size为(1000,1000,1000)的FloatTensor,它有1000*1000*1000=10^9个元素,每一个元素占用32bit/8=4Byte内存,所以共占用大约4GB内存/显存。HalfTensor是专为GPU版本设计的,同样的元素个数,显存占用只有HalfTensor的一半,所以可以极大缓解GPU显存不足的问题,但是由于HalfTensor所能表示的数值大小和精度有限,所以可能出现溢出等问题。

数据类型 CPU Tensor GPU Tensor
32 bit 浮点 torch.FloatTensor torch.cuda.FloatTensor
64 bit 浮点 torch.DoubleTensor torch.cuda.DoubleTensor
16 bit 半精度浮点 N/A torch.cuda.HalfTensor
8 bit 无符号整形(0~255) torch.ByteTensor torch.cuda.ByteTensor
8 bit 有符号整形(-128~127) torch.CharTensor torch.cuda.CharTensor
16 bit 有符号整形 torch.ShortTensor torch.cuda.ShortTensor
32 bit 有符号整形 torch.IntTensor torch.cuda.IntTensor
64 bit 有符号整形 torch.LongTensor torch.cuda LongTensor

各数据类型之间可以互相转换,type(new_type)是通用的做法,同时还有float、long、half等快捷方法。CPU tensor和GPU tensor之间的互换是通过tensor.cudatensor.cpu的方法实现。

如:

#设置默认tensor,注意参数是字符串
torch.set_default_tensor_type('torch.IntTensor')
 
a=torch.Tensor(2,3)
print(a)  #a现在是IntTensor

以上这篇pytorch常见的Tensor类型详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现在每个独立进程中运行一个函数的方法

本文实例讲述了python实现在每个独立进程中运行一个函数的方法。分享给大家供大家参考。具体分析如下: 这个简单的函数可以同于在单独的进程中运行另外一个函数,这对于释放内存资源非常有用...

Python中使用dom模块生成XML文件示例

在Python中解析XML文件也有Dom和Sax两种方式,这里先介绍如何是使用Dom解析XML,这一篇文章是Dom生成XML文件,下一篇文章再继续介绍Dom解析XML文件。 在生成XML...

如何在Python函数执行前后增加额外的行为

首先来看一个小程序,这个是计量所花费时间的程序,以下是以往的解决示例 from functools import wraps, partial from time import ti...

详解Python传入参数的几种方法

详解Python传入参数的几种方法

Python传入参数的方法有:位置参数、默认参数、可变参数、关键字参数、和命名关键字参数、以及各种参数调用的组合 写在前面 Python唯一支持的参数传递方式是『共享传参』(call b...

使用pandas模块读取csv文件和excel表格,并用matplotlib画图的方法

使用pandas模块读取csv文件和excel表格,并用matplotlib画图的方法

如下所示: # coding=utf-8 import pandas as pd # 读取csv文件 3列取名为 name,sex,births,后面参数格式为names= name...