pytorch常见的Tensor类型详解

yipeiwu_com6年前Python基础

Tensor有不同的数据类型,每种类型分别有对应CPU和GPU版本(HalfTensor除外)。默认的Tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认类型为GPU tensor,则所有操作都将在GPU上进行)。

Tensor的类型对分析内存占用很有帮助,例如,一个size为(1000,1000,1000)的FloatTensor,它有1000*1000*1000=10^9个元素,每一个元素占用32bit/8=4Byte内存,所以共占用大约4GB内存/显存。HalfTensor是专为GPU版本设计的,同样的元素个数,显存占用只有HalfTensor的一半,所以可以极大缓解GPU显存不足的问题,但是由于HalfTensor所能表示的数值大小和精度有限,所以可能出现溢出等问题。

数据类型 CPU Tensor GPU Tensor
32 bit 浮点 torch.FloatTensor torch.cuda.FloatTensor
64 bit 浮点 torch.DoubleTensor torch.cuda.DoubleTensor
16 bit 半精度浮点 N/A torch.cuda.HalfTensor
8 bit 无符号整形(0~255) torch.ByteTensor torch.cuda.ByteTensor
8 bit 有符号整形(-128~127) torch.CharTensor torch.cuda.CharTensor
16 bit 有符号整形 torch.ShortTensor torch.cuda.ShortTensor
32 bit 有符号整形 torch.IntTensor torch.cuda.IntTensor
64 bit 有符号整形 torch.LongTensor torch.cuda LongTensor

各数据类型之间可以互相转换,type(new_type)是通用的做法,同时还有float、long、half等快捷方法。CPU tensor和GPU tensor之间的互换是通过tensor.cudatensor.cpu的方法实现。

如:

#设置默认tensor,注意参数是字符串
torch.set_default_tensor_type('torch.IntTensor')
 
a=torch.Tensor(2,3)
print(a)  #a现在是IntTensor

以上这篇pytorch常见的Tensor类型详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

flask 使用 flask_apscheduler 做定时循环任务的实现

我是初学者,对 flask 很陌生,网上搜到的文章都看不懂,很尴尬。 本意是打算对广发信用卡diy卡积分兑换签帐额的数量进行爬虫监控。将抓取到的余量通过钉钉机器人发送到群里。爬虫代码就...

Python 文件操作技巧(File operation) 实例代码分析

常用的module是 os ,os.path 和shutil,所以要先引入他们. python遍历文件夹和文件 这个也许是最常用的功能,如下: 复制代码 代...

详解Python使用tensorflow入门指南

TensorFlow是Google公司2015年11月开源的第二代深度学习框架,是第一代框架DistBelief的改进版本. TensorFlow支持python和c/c++语言,...

python tkinter canvas使用实例

python tkinter canvas使用实例

这篇文章主要介绍了python tkinter canvas使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 注:在使用 cre...

pycham查看程序执行的时间方法

如下所示: import time 首先导入时间模块 在程序开始执行的地方写入: start=time.clock() 在程序末尾写入: end=time.clock()...