pytorch常见的Tensor类型详解

yipeiwu_com5年前Python基础

Tensor有不同的数据类型,每种类型分别有对应CPU和GPU版本(HalfTensor除外)。默认的Tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认类型为GPU tensor,则所有操作都将在GPU上进行)。

Tensor的类型对分析内存占用很有帮助,例如,一个size为(1000,1000,1000)的FloatTensor,它有1000*1000*1000=10^9个元素,每一个元素占用32bit/8=4Byte内存,所以共占用大约4GB内存/显存。HalfTensor是专为GPU版本设计的,同样的元素个数,显存占用只有HalfTensor的一半,所以可以极大缓解GPU显存不足的问题,但是由于HalfTensor所能表示的数值大小和精度有限,所以可能出现溢出等问题。

数据类型 CPU Tensor GPU Tensor
32 bit 浮点 torch.FloatTensor torch.cuda.FloatTensor
64 bit 浮点 torch.DoubleTensor torch.cuda.DoubleTensor
16 bit 半精度浮点 N/A torch.cuda.HalfTensor
8 bit 无符号整形(0~255) torch.ByteTensor torch.cuda.ByteTensor
8 bit 有符号整形(-128~127) torch.CharTensor torch.cuda.CharTensor
16 bit 有符号整形 torch.ShortTensor torch.cuda.ShortTensor
32 bit 有符号整形 torch.IntTensor torch.cuda.IntTensor
64 bit 有符号整形 torch.LongTensor torch.cuda LongTensor

各数据类型之间可以互相转换,type(new_type)是通用的做法,同时还有float、long、half等快捷方法。CPU tensor和GPU tensor之间的互换是通过tensor.cudatensor.cpu的方法实现。

如:

#设置默认tensor,注意参数是字符串
torch.set_default_tensor_type('torch.IntTensor')
 
a=torch.Tensor(2,3)
print(a)  #a现在是IntTensor

以上这篇pytorch常见的Tensor类型详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 使用装饰器并记录log的示例代码

1.首先定义一个log文件 # -*- coding: utf-8 -*- import os import time import logging import sys log_d...

Python根据欧拉角求旋转矩阵的实例

利用numpy和scipy,我们可以很容易根据欧拉角求出旋转矩阵,这里的旋转轴我们你理解成四元数里面的旋转轴 import numpy as np import scipy....

使用PyCharm进行远程开发和调试的实现

使用PyCharm进行远程开发和调试的实现

你是否经常要在Windows 7或MAC OS X上面开发Python或Web应用程序,但是它们最后需要在linux上面来运行呢? 我们经常会碰到开发时没有问题但是到了正式的Linux环...

解决Python 使用h5py加载文件,看不到keys()的问题

python 3.x 环境下,使用h5py加载HDF5文件,查看keys,如下: >>> import h5py >>> f = h5py.Fil...

使用python实现链表操作

使用python实现链表操作

一、概念梳理 链表是计算机科学里面应用应用最广泛的数据结构之一。它是最简单的数据结构之一,同时也是比较高阶的数据结构(例如棧、环形缓冲和队列) 简单的说,一个列表就是单数据通过索引集合在...