pytorch方法测试详解——归一化(BatchNorm2d)

yipeiwu_com6年前Python基础

测试代码:

import torch

import torch.nn as nn

m = nn.BatchNorm2d(2,affine=True) #权重w和偏重将被使用
input = torch.randn(1,2,3,4)
output = m(input)

print("输入图片:")
print(input)
print("归一化权重:")
print(m.weight)
print("归一化的偏重:")
print(m.bias)

print("归一化的输出:")
print(output)
print("输出的尺度:")
print(output.size())

# i = torch.randn(1,1,2)
print("输入的第一个维度:")
print(input[0][0])
firstDimenMean = torch.Tensor.mean(input[0][0])
firstDimenVar= torch.Tensor.var(input[0][0],False) #Bessel's Correction贝塞尔校正不会被使用

print(m.eps)
print("输入的第一个维度平均值:")
print(firstDimenMean)
print("输入的第一个维度方差:")
print(firstDimenVar)

bacthnormone = \
  ((input[0][0][0][0] - firstDimenMean)/(torch.pow(firstDimenVar+m.eps,0.5) ))\
        * m.weight[0] + m.bias[0]
print(bacthnormone)

输出为:

输入图片:

tensor([[[[-2.4308, -1.0281, -1.1322, 0.9819],
     [-0.4069, 0.7973, 1.6296, 1.6797],
     [ 0.2802, -0.8285, 2.0101, 0.1286]],


     [[-0.5740, 0.1970, -0.7209, -0.7231],
     [-0.1489, 0.4993, 0.4159, 1.4238],
     [ 0.0334, -0.6333, 0.1308, -0.2180]]]])

归一化权重:

Parameter containing:
tensor([ 0.5653, 0.0322])

归一化的偏重:

Parameter containing:
tensor([ 0., 0.])

归一化的输出:

tensor([[[[-1.1237, -0.5106, -0.5561, 0.3679],
     [-0.2391, 0.2873, 0.6510, 0.6729],
     [ 0.0612, -0.4233, 0.8173, -0.0050]],


     [[-0.0293, 0.0120, -0.0372, -0.0373],
     [-0.0066, 0.0282, 0.0237, 0.0777],
     [ 0.0032, -0.0325, 0.0084, -0.0103]]]])

输出的尺度:

torch.Size([1, 2, 3, 4])

输入的第一个维度:

tensor([[-2.4308, -1.0281, -1.1322, 0.9819],
    [-0.4069, 0.7973, 1.6296, 1.6797],
    [ 0.2802, -0.8285, 2.0101, 0.1286]])
1e-05

输入的第一个维度平均值:

tensor(0.1401)

输入的第一个维度方差:

tensor(1.6730)
tensor(-1.1237)

结论:

输出的计算公式如下

注意torch中方差实现的方法是没有使用Bessel's correction 贝塞尔校正的方差,所以在自己写的方差中不要用错了。(贝塞尔校正,即样本方差和总体方差之间区别和校正。)

以上这篇pytorch方法测试详解——归一化(BatchNorm2d)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python内置方法实现字符串的秘钥加解密(推荐)

Python内置方法实现字符串的秘钥加解密(推荐)

在实际编程开发中,我们会使用到各类的加密算法来对数据和信息进行加密。比如密码中比较常见的MD5加密,以及AES加密等等。 对于密码认证来说,MD5加密是比较适合的,因为其不需要接触到明文...

介绍Python的@property装饰器的用法

在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改: s = Student() s.score = 9999 这显然不合逻...

Pycharm无法显示动态图片的解决方法

Pycharm无法显示动态图片的解决方法

最近在学习的时候遇到了一个问题始终没有解决,这个博客写的也不是完全解决了这个问题。指示换了一种可行的思路而已。 在运行一些显示动态的图片时,Pycharm只显示一帧,也没有找到什么解决...

Django自定义插件实现网站登录验证码功能

Django自定义插件实现网站登录验证码功能

前言 网站登录的时候我们常常会看到随机的验证码需要输入后台验证,如图: 现在我们来实现在Django中通过自定制插件来实现随机验证 check_code.py 基于PIL生成一个带验证...

python+splinter实现12306网站刷票并自动购票流程

通过python+splinter,实现在12306网站刷票并自动购票流程(无法自动识别验证码)。 此类程序只是提高了12306网站的 <查询> 刷新频率(默认自动查询的刷新...