pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python通过robert、sobel、Laplace算子实现图像边缘提取详解

python通过robert、sobel、Laplace算子实现图像边缘提取详解

实现思路:   1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值)   2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值   3,卷积图片所有的像素点后,把新的矩阵数据类型...

Django与JS交互的示例代码

Django与JS交互的示例代码

应用一:有时候我们想把一个 list 或者 dict 传递给 javascript,处理后显示到网页上,比如要用 js 进行可视化的数据。 请注意:如果是不处理,直接显示在网页上,用Dj...

opencv python 基于KNN的手写体识别的实例

OCR of Hand-written Data using kNN OCR of Hand-written Digits 我们的目标是构建一个可以读取手写数字的应用程序, 为此,我...

一个Python最简单的接口自动化框架

一个Python最简单的接口自动化框架

故事背景 读取一个Excel中的一条数据用例,请求接口,然后返回结果并反填到excel中。过程中会生成请求回来的文本,当然还会生成一个xml文件。具体的excel文件如下: 代码方案...

详谈Python高阶函数与函数装饰器(推荐)

详谈Python高阶函数与函数装饰器(推荐)

一、上节回顾 Python2与Python3字符编码问题,不管你是初学者还是已经对Python的项目了如指掌了,都会犯一些编码上面的错误。我在这里简单归纳Python3和Python2各...