pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python hashlib模块加密过程解析

这篇文章主要介绍了Python hashlib模块加密过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 hashlib模块  ...

python比较2个xml内容的方法

本文实例讲述了python比较2个xml内容的方法。分享给大家供大家参考。具体分析如下: from xml.etree import ElementTree OK=True ma...

python中的turtle库函数简单使用教程

python中的turtle库函数简单使用教程

具体内容如下所示: 参考案例: import turtle d=0 for i in range(4): turtle.fd(200) #或者写成turtle.fo...

Windows下的Jupyter Notebook 安装与自定义启动(图文详解)

Windows下的Jupyter Notebook 安装与自定义启动(图文详解)

【听图阁-专注于Python设计】小编注:如果不是特殊需要建议安装 Anaconda3 即可,自带Jupyter Notebook 。 手动安装之前建议查看这篇文章:/post/1351...

详解Python中 __get__和__getattr__和__getattribute__的区别

引子 假设我们有个类A,其中a是A的实例 a.x时发生了什么?属性的lookup顺序如下: 如果重载了__getattribute__,则调用. a.__dict__,...