pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python的三目运算符和not in运算符使用示例

python的三目运算符和not in运算符使用示例

三目运算符也就是三元运算符 一些语言(如Java)的三元表达式形如: 判定条件?为真时的结果:为假时的结果 result=x if x Python的三元表达式有如下几种书写方法...

python numpy函数中的linspace创建等差数列详解

python numpy函数中的linspace创建等差数列详解

前言 本文主要给大家介绍的是关于linspace创建等差数列的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 numpy.linspace 是用于创建一个由等...

Python中单例模式总结

一、单例模式     a、单例模式分为四种:文件,类,基于__new__方法实现单例模式,基于metaclass方式实现    ...

Pytorch 保存模型生成图片方式

三通道数组转成彩色图片 img=np.array(img1) img=img.reshape(3,img1.shape[2],img1.shape[3])...

连接pandas以及数组转pandas的方法

pandas转数组 np.array(pandas) 数组转pandas pandas.DataFrame(numpy) pandas连接,只是左右接上,不合并值 df...