pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python yield关键词案例测试

测试环境 win10 python 3.5 yield功能简介 简单来说,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,P...

python使用knn实现特征向量分类

这是一个使用knn把特征向量进行分类的demo。 Knn算法的思想简单说就是:看输入的sample点周围的k个点都属于哪个类,哪个类的点最多,就把sample归为哪个类。也就是说,训练集...

TensorFlow基于MNIST数据集实现车牌识别(初步演示版)

TensorFlow基于MNIST数据集实现车牌识别(初步演示版)

在前几天写的一篇博文《如何从TensorFlow的mnist数据集导出手写体数字图片》中,我们介绍了如何通过TensorFlow将mnist手写体数字集导出到本地保存为bmp文件。 车牌...

Python类中的魔法方法之 __slots__原理解析

在类中每次实例化一个对象都会生产一个字典来保存一个对象的所有的实例属性,这样非常的有用处,可以使我们任意的去设置新的属性。 每次实例化一个对象python都会分配一个固定大小内存的字典来...

python创建与遍历List二维列表的方法

python 创建List二维列表 lists = [[] for i in range(3)] # 创建的是多行三列的二维列表 for i in range(3): lists...