pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

CentOS7安装Python3的教程详解

打算学习linux和考一下认证。 学习HCIA-AI实验手册发现的小问题和记录贴,防止自己忘。我不知道这个手册是不是公开的,你们自己去华为下载吧 首先执行 yum -y groupi...

python 三元运算符使用解析

三元运算又称三目运算,是对简单的条件语句的简写 简单条件语句: if 条件成立: val = 1 else: val = 2 改成三元运算: val = 1 if 条件...

Python利用BeautifulSoup解析Html的方法示例

介绍 Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。它是一个工具箱,通过解析文档为用户提供需要抓取的数据,因为简单,所以不需要多少...

python连接池实现示例程序

复制代码 代码如下:import socketimport Queueimport threading def worker():    while Tru...

Scrapy使用的基本流程与实例讲解

Scrapy使用的基本流程与实例讲解

前面已经介绍过如何创建scrapy的项目,和对项目中的文件功能的基本介绍。 这次,就来谈谈使用的基本流程: (1)首先第一点,打开终端,找到自己想要把scrapy工程创建的路径。这里,我...