pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3中的列表,元组,字典,字符串相关知识小结

一、知识概要   1. 列表,元组,字典,字符串的创建方式   2. 列表,元组,字典,字符串的方法调用   3. 列表,元组,字典,字符串的常规用法 二、列表 # 列 表 # 列...

python与C、C++混编的四种方式(小结)

混编的含义有两种, 一种是在python里面写C 一种是C里面写python 本文主要是进行简化,方便使用。 ######################################...

探索Python3.4中新引入的asyncio模块

使用 Simple Protocol asyncio.BaseProtocol 类是asyncio模块中协议接口(protocol interface)的一个常见的基类。asyncio....

python中图像通道分离与合并实例

我就废话不多说了,直接上代码吧! import cv2 img = cv2.imread("1.jpg") b, g, r = cv2.split(img)  #分离函...

基于python+selenium的二次封装的实现

基于python+selenium的二次封装的实现

这是个人对selenium.webdriver写的一些常用操作的二次封装,也就相当于重写了,不再使用自带的框架,用自己写的框架完成。这样的话使代码更简洁,用自己的思想完成代码的编写。...