pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Tensorflow的常用矩阵生成方式

我就废话不多说了,直接上代码吧! #全0和全1矩阵 v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") v2 = tf.Variabl...

python 查找文件夹下所有文件 实现代码

复制代码 代码如下:def find_file_by_pattern(pattern='.*', base=".", circle=True): '''''查找给定文件夹下面所有 '''...

Python开发之快速搭建自动回复微信公众号功能

Python开发之快速搭建自动回复微信公众号功能

在之前的一篇文章 Python利用 AIML 和 Tornado 搭建聊天机器人微信订阅号 中用 aiml 实现了一个简单的英文聊天机器人订阅号。但是只能处理英文消息,现在用 图灵机器人...

解决python3中的requests解析中文页面出现乱码问题

第一部分 关于requests库 (1) requests是一个很实用的Python HTTP客户端库,编写爬虫和测试服务器响应数据时经常会用到。 (2) 其中的Request对象在访问...

Python 支付整合开发包的实现

轻量级支付方式整合集成,实现支付与业务完全剥离,快速简单完成支付模块的开发 特性 屏蔽支付方式之间接入API和数据结构的差异,统一API和数据结构 支持支付类型横向扩展 统...