pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python将多个list合并为1个list的方法

Python将多个list合并为1个list的方法

1、可以使用"+"号完成操作 输出为: [1, 2, 3, 8, 'google', 'com'] 2、使用extend方法 输入相同 3、使用切片 输出相同 PS:len(l1)...

Windows系统下多版本pip的共存问题详解

Windows系统下多版本pip的共存问题详解

前言 可能很多人一看到这个标题直接就关闭了,这么简单和low的问题有必要说出来吗?一看就知道是个Python的小白。如果你是这么想的话,那么就没有必要看下去了,因为对你来说也没有...

Python2与Python3的区别点整理

python解释器默认编码(python2与python3的区别一) python2 解释器默认编码:ascii python3 解释器默认编码:utf-8 输入(python2与p...

python下MySQLdb用法实例分析

本文实例讲述了python下MySQLdb用法。分享给大家供大家参考。具体分析如下: 下载安装MySQLdb ① linux版本 http://sourceforge.net/proje...

Python操作SQLite数据库的方法详解【导入,创建,游标,增删改查等】

本文实例讲述了Python操作SQLite数据库的方法。分享给大家供大家参考,具体如下: SQLite简介 SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含...