pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django实现类似触发器的功能

django实现类似触发器的功能

这篇博客给大家讲解在django中类似触发器的效果 这篇教程分别会讲解 插入记录后,删除记录前,删除记录后这三个部分 相关环境 python 3.6 django2.0 我们一起来看看需...

python中找出numpy array数组的最值及其索引方法

在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之...

Django-Rest-Framework 权限管理源码浅析(小结)

Django-Rest-Framework 权限管理源码浅析(小结)

在django的views中不论是用类方式还是用装饰器方式来使用rest框架,django_rest_frame实现权限管理都需要两个东西的配合: authentication_clas...

Python编程在flask中模拟进行Restful的CRUD操作

Python编程在flask中模拟进行Restful的CRUD操作

这篇文章中我们将通过对HelloWorld的message进行操作,介绍一下如何使用flask进行Restful的CRUD。 概要信息 事前准备:flask liumiaocn:f...

python机器人运动范围问题的解答

机器人的运动范围Python实现: 问题:地上有个 m 行 n 列的方格。一个机器人从坐标(0,0)的格子开始移动,它每一次可以向左、右、上、下移动一格,但不能进入行坐标和列坐标的数位之...