pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django框架面向对象ORM模型继承用法实例分析

本文实例讲述了django框架面向对象ORM模型继承用法。分享给大家供大家参考,具体如下: Django ORM对模型继承的支持,将python面向对象的编程方法与数据库面向关系表的数据...

pandas 读取各种格式文件的方法

pandas 读取各种格式文件: 前置工序: import pandas as pd csv 文件读取中文错误处理: utf-8 codec can't decode .... pd...

OpenCV模板匹配matchTemplate的实现

OpenCV模板匹配matchTemplate的实现

作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性 模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别...

Python 实现 贪吃蛇大作战 代码分享

Python 实现 贪吃蛇大作战 代码分享

感觉游戏审核新政实施后,国内手游市场略冷清,是不是各家的新游戏都在排队等审核。媒体们除了之前竞相追捧《Pokemon Go》热闹了一把,似乎也听不到什么声音了。直到最近几天,突然听见好...

使用python实现希尔、计数、基数基础排序的代码

使用python实现希尔、计数、基数基础排序的代码

希尔排序 希尔排序是一个叫希尔的数学家提出的一种优化版本的插入排序。 首先取一个整数d1=n//2,将元素分为d1个组,每组相邻元素之间的距离为d1,在各组内进行直接插入排序。 取第二个...