pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

tensorflow识别自己手写数字

tensorflow识别自己手写数字

tensorflow作为google开源的项目,现在赶超了caffe,好像成为最受欢迎的深度学习框架。确实在编写的时候更能感受到代码的真实存在,这点和caffe不同,caffe通过编写配...

Python的词法分析与语法分析

词法分析(Lexical Analysis):分析由字符组成的单词是否合法,如果没有问题的话,则产生一个单词流。 语法分析(Syntactic Analysis):分析由单词组成的句子是...

python读取TXT到数组及列表去重后按原来顺序排序的方法

本文实例讲述了python读取TXT到数组及列表去重后按原来顺序排序的方法。分享给大家供大家参考。具体如下: ####################################...

tensorflow构建BP神经网络的方法

之前的一篇博客专门介绍了神经网络的搭建,是在python环境下基于numpy搭建的,之前的numpy版两层神经网络,不能支持增加神经网络的层数。最近看了一个介绍tensorflow的视频...

python 绘制拟合曲线并加指定点标识的实现

python 绘制拟合曲线并加指定点标识的实现

python 绘制拟合曲线并加指定点标识 import os import numpy as np from scipy import log from scipy.optimiz...