pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch 获取层权重,对特定层注入hook, 提取中间层输出的方法

如下所示: #获取模型权重 for k, v in model_2.state_dict().iteritems(): print("Layer {}".format(k)) p...

Python3使用PySynth制作音乐的方法

Python3使用PySynth制作音乐的方法

本人虽然五音不全,但是听歌还是很喜欢的。希望能利用机器自动制作音乐,本我发现了一个比较适合入门的有趣的开源音乐生成模块 PySynth ,文我们主要讲解下如何Python3使用PySyn...

python matplotlib库绘制散点图例题解析

python matplotlib库绘制散点图例题解析

假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温随时间(天)变化的某种规律? a = [11,17,16,11,12,11...

详解Django解决ajax跨域访问问题

详解Django解决ajax跨域访问问题

这篇文章主要给大家介绍了关于Django跨域请求问题解决的相关资料,文中介绍的实现方法包括:使用django-cors-headers全局控制、使用JsonP,只能用于Get方法以及在v...

python-OpenCV 实现将数组转换成灰度图和彩图

python-OpenCV 实现将数组转换成灰度图和彩图

主要步骤 1.生成普通python数组(bytearray(),os.urandom()) 2.转换成numpy数组(numpy.array()) 3.通过reshape将数组转换到所需...