pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pandas之Dropna滤除缺失数据的实现方法

约定: import pandas as pd import numpy as np from numpy import nan as NaN 滤除缺失数据 pandas的设计目...

在Python中使用MongoEngine操作数据库教程实例

在Python中使用MongoEngine操作数据库教程实例

这篇文章主要介绍了在Python中使用MongoEngine操作数据库教程实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 pymo...

python实现傅里叶级数展开的实现

python实现傅里叶级数展开的实现

傅立叶级数的介绍我就不说了,自己也是应用为主,之前一直觉得很难懂,但最近通过自己编程实现了一些函数的傅立叶级数展开之后对傅立叶 级数展开的概念比较清楚了 (1)函数如下 函数图象如...

python读取json文件并将数据插入到mongodb的方法

本文实例讲述了python读取json文件并将数据插入到mongodb的方法。分享给大家供大家参考。具体实现方法如下: #coding=utf-8 import sunburnt i...

pycham查看程序执行的时间方法

如下所示: import time 首先导入时间模块 在程序开始执行的地方写入: start=time.clock() 在程序末尾写入: end=time.clock()...