pytorch的batch normalize使用详解

yipeiwu_com6年前Python基础

torch.nn.BatchNorm1d()

1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)

对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。

num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'

Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)

2、BatchNorm2d(同上)

对3d数据组成的4d输入进行BN。

num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'

Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)

3、BatchNorm3d(同上)

对4d数据组成的5d输入进行BN。

以上这篇pytorch的batch normalize使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python正则表达式完全指南

Python正则表达式完全指南

正则表达式处理文本有如疾风扫秋叶,绝大部分编程语言都内置支持正则表达式,它应用在诸如表单验证、文本提取、替换等场景。爬虫系统更是离不开正则表达式,用好正则表达式往往能收到事半功倍的效果。...

详解PyTorch中Tensor的高阶操作

详解PyTorch中Tensor的高阶操作

条件选取:torch.where(condition, x, y) → Tensor 返回从 x 或 y 中选择元素的张量,取决于 condition 操作定义: 举个例子:...

通过python改变图片特定区域的颜色详解

通过python改变图片特定区域的颜色详解

首先让我祭出一张数学王子高斯的照片,这位印在德国马克上的神人有多牛呢? 他是近代数学的奠基人之一,与牛顿, 阿基米德并称顶级三大数学家,随便找一个编程语言的数学库,里面一定有和他...

详解pandas删除缺失数据(pd.dropna()方法)

详解pandas删除缺失数据(pd.dropna()方法)

1.创建带有缺失值的数据库: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5,...

Python XML转Json之XML2Dict的使用方法

1. Json读写方法 def parseFromFile(self, fname): """ Overwritten to read JSON files. """...