python计算二维矩形IOU实例

yipeiwu_com6年前Python基础

计算交并比:交的面积除以并的面积。

要求矩形框的长和宽应该平行于图片框。不然不能用这样的公式计算。

原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离。两条红线之和很容易算,两条黑线之间的距离就是最小的起点到到最大的末点,最小的起点好算,最大的末点就是两点加上各自长度之后的最大值。这就算出了一维的情况,二维的情况一样,计算二次而已。

def iou(rect1,rect2):
 '''
 计算两个矩形的交并比
 :param rect1:第一个矩形框。表示为x,y,w,h,其中x,y表示矩形右上角的坐标
 :param rect2:第二个矩形框。
 :return:返回交并比,也就是交集比并集
 '''
 x1,y1,w1,h1=rect1
 x2,y2,w2,h2=rect2
 
 inter_w=(w1+w2)-(max(x1+w1,x2+w2)-min(x1,x2))
 inter_h=(h1+h2)-(max(y1+h1,y2+h2)-min(y1,y2))
 
 if inter_h<=0 or inter_w<=0:#代表相交区域面积为0
  return 0
 #往下进行应该inter 和 union都是正值
 inter=inter_w * inter_h
 
 union=w1*h1+w2*h2-inter
 return inter/union

以上这篇python计算二维矩形IOU实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch神经网络之卷积层与全连接层参数的设置方法

当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算...

Tensorflow卷积神经网络实例进阶

Tensorflow卷积神经网络实例进阶

在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick。接下来,我们将使用CIFAR-10数据集进行训练。 CIFAR-10是一个经...

浅谈Python中用datetime包进行对时间的一些操作

1. 计算给出两个时间之间的时间差 import datetime as dt # current time cur_time = dt.datetime.today() # one...

Python测试网络连通性示例【基于ping】

Python测试网络连通性示例【基于ping】

本文实例讲述了Python测试网络连通性。分享给大家供大家参考,具体如下: Python代码 #!/usr/bin/python # -*- coding:GBK -*- """Do...

pytorch实现onehot编码转为普通label标签

label转onehot的很多,但是onehot转label的有点难找,所以就只能自己实现以下,用的topk函数,不知道有没有更好的实现 one_hot = torch.tensor...