python计算二维矩形IOU实例

yipeiwu_com6年前Python基础

计算交并比:交的面积除以并的面积。

要求矩形框的长和宽应该平行于图片框。不然不能用这样的公式计算。

原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离。两条红线之和很容易算,两条黑线之间的距离就是最小的起点到到最大的末点,最小的起点好算,最大的末点就是两点加上各自长度之后的最大值。这就算出了一维的情况,二维的情况一样,计算二次而已。

def iou(rect1,rect2):
 '''
 计算两个矩形的交并比
 :param rect1:第一个矩形框。表示为x,y,w,h,其中x,y表示矩形右上角的坐标
 :param rect2:第二个矩形框。
 :return:返回交并比,也就是交集比并集
 '''
 x1,y1,w1,h1=rect1
 x2,y2,w2,h2=rect2
 
 inter_w=(w1+w2)-(max(x1+w1,x2+w2)-min(x1,x2))
 inter_h=(h1+h2)-(max(y1+h1,y2+h2)-min(y1,y2))
 
 if inter_h<=0 or inter_w<=0:#代表相交区域面积为0
  return 0
 #往下进行应该inter 和 union都是正值
 inter=inter_w * inter_h
 
 union=w1*h1+w2*h2-inter
 return inter/union

以上这篇python计算二维矩形IOU实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对Python发送带header的http请求方法详解

简单的header import urllib2 request = urllib2.Request('http://example.com/') request.add_he...

关于Pytorch的MNIST数据集的预处理详解

关于Pytorch的MNIST数据集的预处理详解

关于Pytorch的MNIST数据集的预处理详解 MNIST的准确率达到99.7% 用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,伪随机化等。 操作系统...

Python3.6安装及引入Requests库的实现方法

Python3.6安装及引入Requests库的实现方法

本博客可能没有那么规范,环境之类的配置。只是让你直接开始编程写python。 至于各种配置网络上有多种方法。 本文仅代表我的观点的一种方法。 电脑环境:win10 64位 第一步:下载p...

Python代码的打包与发布详解

在python程序中,一个.py文件被当作一个模块,在各个模块中定义了不同的函数。当我们要使用某一个模块中的某一个函数时,首先须将这个模块导入,否则就会出现函数未定义的情况. 下面记录的...

Django Rest framework解析器和渲染器详解

Django Rest framework解析器和渲染器详解

解析器 解析器的作用就是服务端接收客户端传过来的数据,把数据解析成自己想要的数据类型的过程. 本质就是对请求体中的数据进行解析. Content-type:用于声明我给你传的是什么类型...