python:目标检测模型预测准确度计算方式(基于IoU)

yipeiwu_com5年前Python基础

训练完目标检测模型之后,需要评价其性能,在不同的阈值下的准确度是多少,有没有漏检,在这里基于IoU(Intersection over Union)来计算。

希望能提供一些思路,如果觉得有用欢迎赞我表扬我~

IoU的值可以理解为系统预测出来的框与原来图片中标记的框的重合程度。系统预测出来的框是利用目标检测模型对测试数据集进行识别得到的。

计算方法即检测结果DetectionResult与GroundTruth的交集比上它们的并集,如下图:

蓝色的框是:GroundTruth

黄色的框是:DetectionResult

绿色的框是:DetectionResult ⋂GroundTruth

红色的框是:DetectionResult ⋃GroundTruth

基本思路是先读取原来图中标记的框信息,对每一张图,把所需要的那一个类别的框拿出来,与测试集上识别出来的框进行比较,计算IoU,选择最大的值作为当前框的IoU值,然后通过设定的阈值(漏检0, 0.3, 0.5, 0.7)来进行比较统计,最后得到每个阈值下的所有的判定为正确检测(IoU值大于阈值)的框的数量,然后与原本的标记框的数量一起计算准确度。

其中计算IoU的时候是重新构建一个背景为0的图,设定框所在的位置为1,分别利用原本标注的框和测试识别的框来构建两个这样的图,两者相加就能够让重叠的部分变成2,于是就可以知道重叠部分的大小(交集),从而计算IoU。

构建代码如下:

#读取txt-标准txt为基准-分类别求阈值-阈值为0. 0.3 0.5 0.7的统计
import glob
import os
import numpy as np
 
#设定的阈值
threshold1=0.3
threshold2=0.5
threshold3=0.7
 
#阈值计数器
counter0=0
counter1=0
counter2=0
counter3=0
 
stdtxt=''#标注txt路径
testtxt=''#测试txt路径
 
txtlist=glob.glob(r'%s\*.txt' %stdtxt)#获取所有txt文件
for path in txtlist:#对每个txt操作
  
  txtname=os.path.basename(path)[:-4]#获取txt文件名
  label=1
  eachtxt=np.loadtxt(path) #读取文件
  for line in eachtxt:
    if line[0]==label:
      #构建背景为0框为1的图
      map1=np.zeros((960,1280))
      map1[line[2]:(line[2]+line[4]),line[1]:(line[1]+line[3])]=1
      
      testfile=np.loadtxt(testtxt + txtname + '.txt')
      c=0
      iou_list=[]#用来存储所有iou的集合
      for tline in testfile:#对测试txt的每行进行操作
        if tline[0]==label:
          c=c+1
          map2=np.zeros((960,1280))
          map2[tline[2]:(tline[2]+tline[4]),tline[1]:(tline[1]+tline[3])]=1
          map3=map1+map2
          a=0
          for i in map3:
            if i==2:
              a=a+1
          iou=a/(line[3]*line[4]+tline[3]*tline[4]-a)#计算iou
          iou_list.append(iou)#添加到集合尾部
          
      threshold=max(iou_list)#阈值取最大的
      #阈值统计
      if threshold>=threshold3:
        counter3=counter3+1
      elif threshold>=threshold2:
        counter2=counter2+1
      elif threshold>=threshold1:
        counter1=counter1+1
      elif threshold<threshold1:#漏检
        counter0=counter0+1

以上这篇python:目标检测模型预测准确度计算方式(基于IoU)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python判断文件夹内是否存在指定后缀文件的实例

该代码主要是基于python实现判断指定文件夹下是否存在指定后缀的文件。代码如下: import os Your_Dir='你的文件夹/' Files=os.listdir(Yo...

Python处理中文标点符号大集合

中文文本中可能出现的标点符号来源比较复杂,通过匹配等手段对他们处理的时候需要格外小心,防止遗漏。以下为在下处理中文标点的时候采用的两种方法: 中文标点集合 比较常见标点有这些: !?...

Python实现正弦信号的时域波形和频谱图示例【基于matplotlib】

Python实现正弦信号的时域波形和频谱图示例【基于matplotlib】

本文实例讲述了Python实现正弦信号的时域波形和频谱图。分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- # 正弦信号的时域波形与频谱图 impor...

python自动格式化json文件的方法

本文实例讲述了python自动格式化json文件的方法。分享给大家供大家参考。具体如下: 这里主要实现将代码混乱的json文件格式化。 还有一小堆python常用算法代码 完整实例代码点...

利用Pytorch实现简单的线性回归算法

利用Pytorch实现简单的线性回归算法

最近听了张江老师的深度学习课程,用Pytorch实现神经网络预测,之前做Titanic生存率预测的时候稍微了解过Tensorflow,听说Tensorflow能做的Pyorch都可以做,...