Pytorch 计算误判率,计算准确率,计算召回率的例子

yipeiwu_com5年前Python基础

无论是官方文档还是各位大神的论文或搭建的网络很多都是计算准确率,很少有计算误判率,

下面就说说怎么计算准确率以及误判率、召回率等指标

1.计算正确率

获取每批次的预判正确个数

train_correct = (pred == batch_y.squeeze(1)).sum()

该语句的意思是 预测的标签与实际标签相等的总数

获取训练集总的预判正确个数

train_acc += train_correct.data[0] #用来计算正确率

准确率 : train_acc / (len(train_data))

2.误判率

举例:当你是二分类时,你需要计算 原标签为1,但预测为 0 ,以及 原标签为0,预测为1的 误判率

误判率又分为:

CTW : correct to wrong 标签为正确的,预测为错误的

WTC: wrong to correct 标签为错误的,预测为正确的

zes=Variable(torch.zeros(lasize).type(torch.LongTensor))#全0变量

ons=Variable(torch.ones(lasize).type(torch.LongTensor))#全1变量

train_correct01 = ((pred==zes)&(batch_y.squeeze(1)==ons)).sum() #原标签为1,预测为 0 的总数

train_correct10 = ((pred==ons)&(batch_y.squeeze(1)==zes)).sum() #原标签为0,预测为1 的总数

train_correct11 = ((pred_y==ons)&(batch_y.squeeze(1)==ons)).sum()
train_correct00 = ((pred_y==zes)&(batch_y.squeeze(1)==zes)).sum()

获取训练集总的误判个数

FN += train_correct01.data[0]

FP += train_correct10.data[0]

TP += train_correct11.data[0]
TN += train_correct00.data[0]

误判率 :

(FN+FP)/(len(train_data)) #CTW+WTC

3.精准率和召回率


精准率: P = TP/ (TP+FP)
召回率: R = TP/ (TP+FN)


4.真正例率和假正例率

真正例率:TPR = TP/ (TP+FN)
假正例率:FPR =FP/ (FP+TN)

最后,当你要计算多分类的误判率时,只需在二分类的基础上类推即可

以上这篇Pytorch 计算误判率,计算准确率,计算召回率的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中使用PDB库调试程序

Python自带的pdb库,发现用pdb来调试程序还是很方便的,当然了,什么远程调试,多线程之类,pdb是搞不定的。 用pdb调试有多种方式可选: 1. 命令行启动目标程序,加上-m参数...

selenium使用chrome浏览器测试(附chromedriver与chrome的对应关系表)

selenium使用chrome浏览器测试(附chromedriver与chrome的对应关系表)

使用WebDriver在Chrome浏览器上进行测试时,需要从http://chromedriver.storage.googleapis.com/index.html网址中下载与本机c...

python实现人工智能Ai抠图功能

python实现人工智能Ai抠图功能

自己是个PS小白,没办法只能通过技术来证明自己。 话不多说,直接上代码 from removebg import RemoveBg import requests import os...

Python计时相关操作详解【time,datetime】

本文实例讲述了Python计时相关操作。分享给大家供大家参考,具体如下: 内容目录: 1. 时间戳 2. 当前时间 3. 时间差 4. python中时间日期格式化符号 5. 例子 一、...

Python实现的简单线性回归算法实例分析

本文实例讲述了Python实现的简单线性回归算法。分享给大家供大家参考,具体如下: 用python实现R的线性模型(lm)中一元线性回归的简单方法,使用R的women示例数据,R的运行结...