Pytorch 计算误判率,计算准确率,计算召回率的例子

yipeiwu_com6年前Python基础

无论是官方文档还是各位大神的论文或搭建的网络很多都是计算准确率,很少有计算误判率,

下面就说说怎么计算准确率以及误判率、召回率等指标

1.计算正确率

获取每批次的预判正确个数

train_correct = (pred == batch_y.squeeze(1)).sum()

该语句的意思是 预测的标签与实际标签相等的总数

获取训练集总的预判正确个数

train_acc += train_correct.data[0] #用来计算正确率

准确率 : train_acc / (len(train_data))

2.误判率

举例:当你是二分类时,你需要计算 原标签为1,但预测为 0 ,以及 原标签为0,预测为1的 误判率

误判率又分为:

CTW : correct to wrong 标签为正确的,预测为错误的

WTC: wrong to correct 标签为错误的,预测为正确的

zes=Variable(torch.zeros(lasize).type(torch.LongTensor))#全0变量

ons=Variable(torch.ones(lasize).type(torch.LongTensor))#全1变量

train_correct01 = ((pred==zes)&(batch_y.squeeze(1)==ons)).sum() #原标签为1,预测为 0 的总数

train_correct10 = ((pred==ons)&(batch_y.squeeze(1)==zes)).sum() #原标签为0,预测为1 的总数

train_correct11 = ((pred_y==ons)&(batch_y.squeeze(1)==ons)).sum()
train_correct00 = ((pred_y==zes)&(batch_y.squeeze(1)==zes)).sum()

获取训练集总的误判个数

FN += train_correct01.data[0]

FP += train_correct10.data[0]

TP += train_correct11.data[0]
TN += train_correct00.data[0]

误判率 :

(FN+FP)/(len(train_data)) #CTW+WTC

3.精准率和召回率


精准率: P = TP/ (TP+FP)
召回率: R = TP/ (TP+FN)


4.真正例率和假正例率

真正例率:TPR = TP/ (TP+FN)
假正例率:FPR =FP/ (FP+TN)

最后,当你要计算多分类的误判率时,只需在二分类的基础上类推即可

以上这篇Pytorch 计算误判率,计算准确率,计算召回率的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的左斜杠、右斜杠(正斜杠和反斜杠)

首先,"/"左倾斜是正斜杠,"\"右倾斜是反斜杠,可以记为:除号是正斜杠一般来说对于目录分隔符,Unix和Web用正斜杠/,Windows用反斜杠,但是现在Windows (一)目录中...

Django如何实现内容缓存示例详解

Django如何实现内容缓存示例详解

前言 本文主要给大家介绍了关于Django实现内容缓存的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 1.缓存的简介 在动态网站中,用户所有的请求,服务器都...

python交易记录整合交易类详解

python交易记录整合交易类详解

接着上一篇,这里继续整合交易类。 import datetime #交易类,后期需要整合公钥,私钥 class Transaction: #payer 付款方,receiver收...

浅谈Python中的全局锁(GIL)问题

CPU-bound(计算密集型) 和I/O bound(I/O密集型) 计算密集型任务(CPU-bound) 的特点是要进行大量的计算,占据着主要的任务,消耗CPU资源,一直处于满负荷状...

pandas的to_datetime时间转换使用及学习心得

前言 昨天在网赛中做了一道题,虽然是外国人的Englis题目,但是内容很有学习的价值,值得仔细的学习,今天就把我所收获的一部分记录下来。其一:做个学习的资料记录。其二:分享出来,供大家参...