Pytorch 计算误判率,计算准确率,计算召回率的例子

yipeiwu_com6年前Python基础

无论是官方文档还是各位大神的论文或搭建的网络很多都是计算准确率,很少有计算误判率,

下面就说说怎么计算准确率以及误判率、召回率等指标

1.计算正确率

获取每批次的预判正确个数

train_correct = (pred == batch_y.squeeze(1)).sum()

该语句的意思是 预测的标签与实际标签相等的总数

获取训练集总的预判正确个数

train_acc += train_correct.data[0] #用来计算正确率

准确率 : train_acc / (len(train_data))

2.误判率

举例:当你是二分类时,你需要计算 原标签为1,但预测为 0 ,以及 原标签为0,预测为1的 误判率

误判率又分为:

CTW : correct to wrong 标签为正确的,预测为错误的

WTC: wrong to correct 标签为错误的,预测为正确的

zes=Variable(torch.zeros(lasize).type(torch.LongTensor))#全0变量

ons=Variable(torch.ones(lasize).type(torch.LongTensor))#全1变量

train_correct01 = ((pred==zes)&(batch_y.squeeze(1)==ons)).sum() #原标签为1,预测为 0 的总数

train_correct10 = ((pred==ons)&(batch_y.squeeze(1)==zes)).sum() #原标签为0,预测为1 的总数

train_correct11 = ((pred_y==ons)&(batch_y.squeeze(1)==ons)).sum()
train_correct00 = ((pred_y==zes)&(batch_y.squeeze(1)==zes)).sum()

获取训练集总的误判个数

FN += train_correct01.data[0]

FP += train_correct10.data[0]

TP += train_correct11.data[0]
TN += train_correct00.data[0]

误判率 :

(FN+FP)/(len(train_data)) #CTW+WTC

3.精准率和召回率


精准率: P = TP/ (TP+FP)
召回率: R = TP/ (TP+FN)


4.真正例率和假正例率

真正例率:TPR = TP/ (TP+FN)
假正例率:FPR =FP/ (FP+TN)

最后,当你要计算多分类的误判率时,只需在二分类的基础上类推即可

以上这篇Pytorch 计算误判率,计算准确率,计算召回率的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Python下进行UDP网络编程的教程

在Python下进行UDP网络编程的教程

TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据。相对TCP,UDP则是面向无连接的协议。 使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号,就可以直接发数据...

Python封装shell命令实例分析

本文实例讲述了Python封装shell命令的方法。分享给大家供大家参考。具体实现方法如下: # -*- coding: utf-8 -*- import os import sub...

Python正则表达式介绍

Python正则表达式介绍

注意:本文基于Python2.4完成;如果看到不明白的词汇请记得百度谷歌或维基,whatever。 1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分。正则表...

解决Django migrate不能发现app.models的表问题

有时候运行Django的migrate命令不能创建INSTALLED_APPS中的app中的models.py的数据库表, 这时可以先运行: python manage.py mak...

在Django中使用Sitemap的方法讲解

sitemap 是你服务器上的一个XML文件,它告诉搜索引擎你的页面的更新频率和某些页面相对于其它页面的重要性。 这个信息会帮助搜索引擎索引你的网站。 例如,这是 Django 网站(h...