Pytorch 计算误判率,计算准确率,计算召回率的例子

yipeiwu_com5年前Python基础

无论是官方文档还是各位大神的论文或搭建的网络很多都是计算准确率,很少有计算误判率,

下面就说说怎么计算准确率以及误判率、召回率等指标

1.计算正确率

获取每批次的预判正确个数

train_correct = (pred == batch_y.squeeze(1)).sum()

该语句的意思是 预测的标签与实际标签相等的总数

获取训练集总的预判正确个数

train_acc += train_correct.data[0] #用来计算正确率

准确率 : train_acc / (len(train_data))

2.误判率

举例:当你是二分类时,你需要计算 原标签为1,但预测为 0 ,以及 原标签为0,预测为1的 误判率

误判率又分为:

CTW : correct to wrong 标签为正确的,预测为错误的

WTC: wrong to correct 标签为错误的,预测为正确的

zes=Variable(torch.zeros(lasize).type(torch.LongTensor))#全0变量

ons=Variable(torch.ones(lasize).type(torch.LongTensor))#全1变量

train_correct01 = ((pred==zes)&(batch_y.squeeze(1)==ons)).sum() #原标签为1,预测为 0 的总数

train_correct10 = ((pred==ons)&(batch_y.squeeze(1)==zes)).sum() #原标签为0,预测为1 的总数

train_correct11 = ((pred_y==ons)&(batch_y.squeeze(1)==ons)).sum()
train_correct00 = ((pred_y==zes)&(batch_y.squeeze(1)==zes)).sum()

获取训练集总的误判个数

FN += train_correct01.data[0]

FP += train_correct10.data[0]

TP += train_correct11.data[0]
TN += train_correct00.data[0]

误判率 :

(FN+FP)/(len(train_data)) #CTW+WTC

3.精准率和召回率


精准率: P = TP/ (TP+FP)
召回率: R = TP/ (TP+FN)


4.真正例率和假正例率

真正例率:TPR = TP/ (TP+FN)
假正例率:FPR =FP/ (FP+TN)

最后,当你要计算多分类的误判率时,只需在二分类的基础上类推即可

以上这篇Pytorch 计算误判率,计算准确率,计算召回率的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Flask框架使用DBUtils模块连接数据库操作示例

本文实例讲述了Flask框架使用DBUtils模块连接数据库的操作方法。分享给大家供大家参考,具体如下: Flask连接数据库 数据库连接池: Django使用:django ORM(p...

selenium跳过webdriver检测并模拟登录淘宝

selenium跳过webdriver检测并模拟登录淘宝

简介 模拟登录淘宝已经不是一件新鲜的事情了,过去我曾经使用get/post方式进行爬虫,同时也加入IP代理池进行跳过检验,但随着大型网站的升级,采取该策略比较难实现了。因为你使用get/...

使用python删除nginx缓存文件示例(python文件操作)

调用时输入参数如:  www.jb51.net/表示删除www.jb51.net首页的缓存, www.jb51.net/test.php就表示删除/test.php的缓存复制代...

Python 模拟员工信息数据库操作的实例

Python 模拟员工信息数据库操作的实例

1.功能简介 此程序模拟员工信息数据库操作,按照语法输入指令即能实现员工信息的增、删、改、查功能。 2.实现方法 • 架构: 本程序采用python语言编写,关键在于指令的解...

用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

听说pytorch使用比TensorFlow简单,加之pytorch现已支持windows,所以今天装了pytorch玩玩,第一件事还是写了个简单的CNN在MNIST上实验,初步体验的确...