在pytorch 中计算精度、回归率、F1 score等指标的实例

yipeiwu_com6年前Python基础

pytorch中训练完网络后,需要对学习的结果进行测试。官网上例程用的方法统统都是正确率,使用的是torch.eq()这个函数。

但是为了更精细的评价结果,我们还需要计算其他各个指标。在把官网API翻了一遍之后发现并没有用于计算TP,TN,FP,FN的函数。。。

在动了无数歪脑筋之后,心想pytorch完全支持numpy,那能不能直接进行判断,试了一下果然可以,上代码:

# TP predict 和 label 同时为1
TP += ((pred_choice == 1) & (target.data == 1)).cpu().sum()
# TN predict 和 label 同时为0
TN += ((pred_choice == 0) & (target.data == 0)).cpu().sum()
# FN predict 0 label 1
FN += ((pred_choice == 0) & (target.data == 1)).cpu().sum()
# FP predict 1 label 0
FP += ((pred_choice == 1) & (target.data == 0)).cpu().sum()

p = TP / (TP + FP)
r = TP / (TP + FN)
F1 = 2 * r * p / (r + p)
acc = (TP + TN) / (TP + TN + FP + FN

这样就能看到各个指标了。

因为target是Variable所以需要用target.data取到对应的tensor,又因为是在gpu上算的,需要用 .cpu() 移到cpu上。

因为这是一个batch的统计,所以需要用+=累计出整个epoch的统计。当然,在epoch开始之前需要清零

以上这篇在pytorch 中计算精度、回归率、F1 score等指标的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python射线法判断一个点在图形区域内外

用python 实现的代码:判断一个点在图形区域内外,供大家参考,具体内容如下 # -*-encoding:utf-8 -*- # file:class.py # """ 信息...

Python流行ORM框架sqlalchemy安装与使用教程

本文实例讲述了Python流行ORM框架sqlalchemy安装与使用。分享给大家供大家参考,具体如下: 安装 http://docs.sqlalchemy.org/ 1、安装 #进...

Python openpyxl读取单元格字体颜色过程解析

问题 我试图打印some_cell.font.color.rgb并得到各种结果。 对于一些人,我得到了我想要的东西(比如“ FF000000”),但对于其他人,它给了我Value mus...

Python的互斥锁与信号量详解

并发与锁 多个线程共享数据的时候,如果数据不进行保护,那么可能出现数据不一致现象,使用锁,信号量、条件锁 互斥锁 1. 互斥锁,是使用一把锁把代码保护起来,以牺牲性能换取代码的安全...

Python TestCase中的断言方法介绍

Python TestCase中的断言方法介绍

前言 测试是一个贯穿于整个开发过程的连续过程,从某个意义上说,软件开发的过程实际上就是测试过程。正如Martin Fowler所说的"在你不知道如何测试代码之前,就不该编写程序。而一旦你...