python通过opencv实现图片裁剪原理解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了python通过opencv实现图片裁剪原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

图像裁剪的基本概念 :
图像裁剪是指将图像中我们想要的研究区以外的区域去除,经常是按照行政区划或研究区域的边界对图像进行裁剪。例如,一张500×400的图像,我们只想要中间的250×200的区域,就可以使用图像裁剪将四周的区域去除。

在实际开发工作中,我们经常需要对图像进行分幅裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分幅裁剪分为规则分幅裁剪和不规则分幅裁剪两种类型。

规则分幅裁剪:指裁剪图像的边界范围是一个矩形。裁剪时只需要通过左上角和右下角两点的坐标,就可以确定图像的裁剪位置。

不规则分幅裁剪:指裁剪图像的边界范围是任意多边形,裁剪时必须首先生成一个完整的闭合多边形区域。

图像裁剪的OpenCV实现

规则分幅裁剪:

在OpenCV中,图像被看成矩阵数据,我们将图像视为多维list,因为规则分幅裁剪的边界范围是一个矩形,所以我们可以根据列表切片来实现图像的规则分幅裁剪。现在,我们来实现将500×400的图像中间的250×200的区域裁剪出来。

计算图如下:

import cv2
img = cv2.imread("500x400.jpg")
img1=img[100:300,125:375] #需要保留的区域--裁剪
#参数1 是高度的范围,参数2是宽度的范围

cv2.imwrite("linsi.jpg",img1)
cv2.waitKey(0)

效果图:

不规则分幅裁剪

对于不规则分幅裁剪,首先得生成一个完整的闭合多边形区域。假设我们现在要将图像裁剪成一个圆形图像,那么我们就得首先生成一个圆形。OpenCV中为我们提供了专门用于画圆形图的方法circle

,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值

相关文章

Python生成MD5值的两种方法实例分析

本文实例讲述了Python生成MD5值的两种方法。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- import datetime # NO.1 使用M...

Python深拷贝与浅拷贝用法实例分析

本文实例讲述了Python深拷贝与浅拷贝用法。分享给大家供大家参考,具体如下: 1、对象的赋值 对象的赋值实际上是对象之间的引用:当创建一个对象,然后将这个对象赋值给另外一个变量的时候,...

tensorflow saver 保存和恢复指定 tensor的实例讲解

在实践中经常会遇到这样的情况: 1、用简单的模型预训练参数 2、把预训练的参数导入复杂的模型后训练复杂的模型 这时就产生一个问题: 如何加载预训练的参数。 下面就是我的总结。 为了方便说...

Pycharm 2019 破解激活方法图文详解

Pycharm 2019 破解激活方法图文详解

使用破解补丁方法虽然麻烦,但是可用激活到2099年,基本上是永久激活了,毕竟在座各位能活到这个年份也是寥寥无几了吧!! 步骤一、下载破解补丁, 链接: https://pan.baid...

python矩阵的转置和逆转实例

如下所示: # 矩阵的转置 def transpose(list1): return [list(row) for row in zip(*list1)] list1 = [[...