tensorflow中tf.slice和tf.gather切片函数的使用

yipeiwu_com6年前Python基础

tf.slice(input_, begin, size, name=None):按照指定的下标范围抽取连续区域的子集

tf.gather(params, indices, validate_indices=None, name=None):按照指定的下标集合从axis=0中抽取子集,适合抽取不连续区域的子集

输出:

input = [[[1, 1, 1], [2, 2, 2]],
   [[3, 3, 3], [4, 4, 4]],
   [[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
           [4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
           [[5, 5, 5]]]
           
tf.gather(input, [0, 2]) ==> [[[1, 1, 1], [2, 2, 2]],
        [[5, 5, 5], [6, 6, 6]]]

假设我们要从input中抽取[[[3, 3, 3]]],这个输出在inputaxis=0的下标是1,axis=1的下标是0,axis=2的下标是0-2,所以begin=[1,0,0],size=[1,1,3]。

假设我们要从input中抽取[[[3, 3, 3], [4, 4, 4]]],这个输出在inputaxis=0的下标是1,axis=1的下标是0-1,axis=2的下标是0-2,所以begin=[1,0,0],size=[1,2,3]。

假设我们要从input中抽取[[[3, 3, 3], [5, 5, 5]]],这个输出在inputaxis=0的下标是1-2,axis=1的下标是0,axis=2的下标是0-2,所以begin=[1,0,0],size=[2,1,3]。

假设我们要从input中抽取[[[1, 1, 1], [2, 2, 2]],[[5, 5, 5], [6, 6, 6]]],这个输出在input的axis=0的下标是[0, 2],不连续,可以用tf.gather抽取。input[0]和input[2]

以上这篇tensorflow中tf.slice和tf.gather切片函数的使用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python容器使用的5个技巧和2个误区总结

Python容器使用的5个技巧和2个误区 “容器”这两个字很少被 Python 技术文章提起。一看到“容器”,大家想到的多是那头蓝色小鲸鱼:Docker,但这篇文章和它没有任何关系。本文...

python 判断参数为Nonetype类型或空的实例

Nonetype和空值是不一致的,可以理解为Nonetype为不存在这个参数,空值表示参数存在,但是值为空 判断方式如下: if hostip is None: print...

Python判断值是否在list或set中的性能对比分析

本文实例对比分析了Python判断值是否在list或set中的执行性能。分享给大家供大家参考,具体如下: 判断值是否在set集合中的速度明显要比list快的多, 因为查找set用到了ha...

使用Python OpenCV为CNN增加图像样本的实现

使用Python OpenCV为CNN增加图像样本的实现

我们在做深度学习的过程中,经常面临图片样本不足、不平衡的情况,在本文中,作者结合实际工作经验,通过图像的移动、缩放、旋转、增加噪声等图像变换技术,能快速、简便的增加样本数量。 本文所有案...

Python随机生成数模块random使用实例

代码 复制代码 代码如下: #!/usr/bin/env python #coding=utf-8 import random #生成[0, 1)直接随机浮点数 print random...