tensorflow中tf.slice和tf.gather切片函数的使用

yipeiwu_com6年前Python基础

tf.slice(input_, begin, size, name=None):按照指定的下标范围抽取连续区域的子集

tf.gather(params, indices, validate_indices=None, name=None):按照指定的下标集合从axis=0中抽取子集,适合抽取不连续区域的子集

输出:

input = [[[1, 1, 1], [2, 2, 2]],
   [[3, 3, 3], [4, 4, 4]],
   [[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
           [4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
           [[5, 5, 5]]]
           
tf.gather(input, [0, 2]) ==> [[[1, 1, 1], [2, 2, 2]],
        [[5, 5, 5], [6, 6, 6]]]

假设我们要从input中抽取[[[3, 3, 3]]],这个输出在inputaxis=0的下标是1,axis=1的下标是0,axis=2的下标是0-2,所以begin=[1,0,0],size=[1,1,3]。

假设我们要从input中抽取[[[3, 3, 3], [4, 4, 4]]],这个输出在inputaxis=0的下标是1,axis=1的下标是0-1,axis=2的下标是0-2,所以begin=[1,0,0],size=[1,2,3]。

假设我们要从input中抽取[[[3, 3, 3], [5, 5, 5]]],这个输出在inputaxis=0的下标是1-2,axis=1的下标是0,axis=2的下标是0-2,所以begin=[1,0,0],size=[2,1,3]。

假设我们要从input中抽取[[[1, 1, 1], [2, 2, 2]],[[5, 5, 5], [6, 6, 6]]],这个输出在input的axis=0的下标是[0, 2],不连续,可以用tf.gather抽取。input[0]和input[2]

以上这篇tensorflow中tf.slice和tf.gather切片函数的使用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python利用PyExecJS库执行JS函数的案例分析

Python利用PyExecJS库执行JS函数的案例分析

  在Web渗透流程的暴力登录场景和爬虫抓取场景中,经常会遇到一些登录表单用DES之类的加密方式来加密参数,也就是说,你不搞定这些前端加密,你的编写的脚本是不可能...

Python自定义主从分布式架构实例分析

Python自定义主从分布式架构实例分析

本文实例讲述了Python自定义主从分布式架构。分享给大家供大家参考,具体如下: 环境:Win7 x64,Python 2.7,APScheduler 2.1.2。 原理图如下: 代码...

pyqt5实现登录界面的模板

本文实例为大家分享了pyqt5登录界面的实现模板,供大家参考,具体内容如下 说明 本例,展示了通过登录界面打开主界面的实现方式。 其中,登录的账号与密码判断都比较简单,请大家根据自己需...

从零学Python之入门(五)缩进和选择

缩进 Python最具特色的是用缩进来标明成块的代码。我下面以if选择结构来举例。if后面跟随条件,如果条件成立,则执行归属于if的一个代码块。 先看C语言的表达方式(注意,这是C,不是...

django 实现编写控制登录和访问权限控制的中间件方法

django中,很多时候我们都需要有一个地方来进行更加详细的权限控制,例如说哪些用户可以访问哪些页面,检查登录状态等,这里的话就涉及到了中间件的编写了。 在django项目下的setti...