TensorFlow2.0:张量的合并与分割实例

yipeiwu_com5年前Python基础

**

一 tf.concat( ) 函数–合并
**

In [2]: a = tf.ones([4,35,8])                          

In [3]: b = tf.ones([2,35,8])                          

In [4]: c = tf.concat([a,b],axis=0)                       

In [5]: c.shape                                 
Out[5]: TensorShape([6, 35, 8])

In [6]: a = tf.ones([4,32,8])                          

In [7]: b = tf.ones([4,3,8])                          

In [8]: c = tf.concat([a,b],axis=1)                       

In [9]: c.shape                                 
Out[9]: TensorShape([4, 35, 8])

**

二 tf.stack( ) 函数–数据的堆叠,创建新的维度
**

In [2]: a = tf.ones([4,35,8])                          

In [3]: a.shape                                 
Out[3]: TensorShape([4, 35, 8])

In [4]: b = tf.ones([4,35,8])                          

In [5]: b.shape                                 
Out[5]: TensorShape([4, 35, 8])

In [6]: tf.concat([a,b],axis=-1).shape                     
Out[6]: TensorShape([4, 35, 16])

In [7]: tf.stack([a,b],axis=0).shape                      
Out[7]: TensorShape([2, 4, 35, 8])

In [8]: tf.stack([a,b],axis=3).shape                      
Out[8]: TensorShape([4, 35, 8, 2])

**

三 tf.unstack( )函数–解堆叠
**

In [16]: a = tf.ones([4,35,8])                                                                                       

In [17]: b = tf.ones([4,35,8])                                                                                       

In [18]: c = tf.stack([a,b],axis=0)                                                                                     

In [19]: a.shape,b.shape,c.shape                                                                                      
Out[19]: (TensorShape([4, 35, 8]), TensorShape([4, 35, 8]), TensorShape([2, 4, 35, 8]))

In [20]: aa,bb = tf.unstack(c,axis=0)                                                                                    

In [21]: aa.shape,bb.shape                                                                                         
Out[21]: (TensorShape([4, 35, 8]), TensorShape([4, 35, 8]))

In [22]: res = tf.unstack(c,axis=1)                                                                                     

In [23]: len(res)                                                                                              
Out[23]: 4

**

四 tf.split( ) 函数
**

In [16]: a = tf.ones([4,35,8])                                                                                       

In [17]: b = tf.ones([4,35,8])                                                                                       

In [18]: c = tf.stack([a,b],axis=0)                                                                                     

In [19]: a.shape,b.shape,c.shape                                                                                      
Out[19]: (TensorShape([4, 35, 8]), TensorShape([4, 35, 8]), TensorShape([2, 4, 35, 8]))

In [20]: aa,bb = tf.unstack(c,axis=0)                                                                                    

In [21]: aa.shape,bb.shape                                                                                         
Out[21]: (TensorShape([4, 35, 8]), TensorShape([4, 35, 8]))

In [22]: res = tf.unstack(c,axis=1)                                                                                     

In [23]: len(res)                                                                                              
Out[23]: 4

以上这篇TensorFlow2.0:张量的合并与分割实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django网络框架之HelloDjango项目创建教程

Django网络框架之HelloDjango项目创建教程

本文实例讲述了Django网络框架之HelloDjango项目。分享给大家供大家参考,具体如下: 这里将带你从零开始创建一个Django项目,包含完整的MTV架构、创建子应用,及访问静态...

深入浅析Python 中 is 语法带来的误解

起步 Python 的成功一个原因是它的可读性,代码清晰易懂,更容易被人类所理解,但有时可读性会产生误解。 假如要判断一个变量是不是 17,那可以: if x is 17: x 是 17...

深入浅析Python中join 和 split详解(推荐)

python join 和 split方法简单的说是:join用来连接字符串,split恰好相反,拆分字符串的。 .join()   join将 容器对象 拆分并以指定的字符将列表内的元...

Python 异常处理实例详解

一、什么是异常?异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行。一般情况下,在Python无法正常处理程序时就会发生一个异常。异常是Python对象,表示一个错误。...

python hough变换检测直线的实现方法

python hough变换检测直线的实现方法

1 原理  2 检测步骤 将参数空间(ρ,θ) 量化成m*n(m为ρ的等份数,n为θ的等份数)个单元,并设置累加器矩阵,初始值为0; 对图像边界上的每一个点(x,y)带入ρ=...