如何基于python实现归一化处理

yipeiwu_com5年前Python基础

这篇文章主要介绍了如何基于python实现归一化处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

        一、定义

  归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速。

  二、目的

  不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。其具体针对的是奇异样本数据,奇异样本数据指的是相对于其他输入样本特别大或特别小的样本矢量,如[0.34,0.51,0.44,222][0.34,0.51,0.44,128]中最后一列元素就是奇异样本数据。

  三、常见标准化方法

  1.最大-最小标准化映射到区间[0,1]

  2.Z-score标准化结果聚集在0附近方差为1

  四、矩阵的归一化

  矩阵的列归一化,就是将矩阵每一列的值,除以每一列所有元素平方和的绝对值,这样做的结果就是,矩阵每一列元素的平方和为1了。

  五、python归一化

  其中参数axis=0表示列也是跨行的意思axis=1表示行也是跨列的意思

  fromsklearn.preprocessingimportnormalize
  data=np.array([
  [1000,10,0.5],
  [765,5,0.35],
  [800,7,0.09],])
  data=normalize(data,axis=0,norm='max')
  print(data)
  >>[[1.1.1.]
  [0.7650.50.7]
  [0.80.70.18]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python的Flask框架的简介和安装方法

请在开始使用 Flask 之前阅读本文。也希望本文能够回答关于 Flask 项目的初衷以及目标,以及 flask 适用的场景(情境)等问题。 什么是 “微”? “微” (“Micro”)...

python list语法学习(带例子)

创建:list = [5,7,9]取值和改值:list[1] = list[1] * 5列表尾插入:list.append(4)去掉第0个值并返回第0个值的数值:list.pop(0)去...

python中pytest收集用例规则与运行指定用例详解

前言 上篇文章相信大家已经了解了pytest在cmd下结合各种命令行参数如何运行测试用例,并输出我们想要看到的信息。那么今天会讲解一下pytest是如何收集我们写好的用例?我们又有哪些...

安装好Pycharm后如何配置Python解释器简易教程

安装好Pycharm后如何配置Python解释器简易教程

这两天有许多Python小白加入学习群,并且问了许多关于Pycharm基本使用的问题,今天小编就以配置Python解释器的问题给大家简单絮叨一下。 1、一般来说,当我们启动Pycharm...

使用pyhon绘图比较两个手机屏幕大小(实例代码)

使用pyhon绘图比较两个手机屏幕大小(实例代码)

背景:准备给长辈买个手机,有关手机大小,网购平台基本只有手机尺寸和分辨率的文本数据,因而对手机屏幕大小没有直观感受,虽然网上有比较手机大小的网站(百度搜索),但是只有知名的手机才有数据,...